usage.rst 128 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579
  1. .. SPDX-License-Identifier: CC-BY-SA-2.0-UK
  2. .. highlight:: shell
  3. ***************************************************************
  4. Basic Usage (with examples) for each of the Yocto Tracing Tools
  5. ***************************************************************
  6. |
  7. This chapter presents basic usage examples for each of the tracing
  8. tools.
  9. perf
  10. ====
  11. The perf tool is the profiling and tracing tool that comes bundled
  12. with the Linux kernel.
  13. Don't let the fact that it's part of the kernel fool you into thinking
  14. that it's only for tracing and profiling the kernel --- you can indeed use
  15. it to trace and profile just the kernel, but you can also use it to
  16. profile specific applications separately (with or without kernel
  17. context), and you can also use it to trace and profile the kernel and
  18. all applications on the system simultaneously to gain a system-wide view
  19. of what's going on.
  20. In many ways, perf aims to be a superset of all the tracing and
  21. profiling tools available in Linux today, including all the other tools
  22. covered in this How-to. The past couple of years have seen perf subsume a
  23. lot of the functionality of those other tools and, at the same time,
  24. those other tools have removed large portions of their previous
  25. functionality and replaced it with calls to the equivalent functionality
  26. now implemented by the perf subsystem. Extrapolation suggests that at
  27. some point those other tools will become completely redundant and
  28. go away; until then, we'll cover those other tools in these pages and in
  29. many cases show how the same things can be accomplished in perf and the
  30. other tools when it seems useful to do so.
  31. The coverage below details some of the most common ways you'll likely
  32. want to apply the tool; full documentation can be found either within
  33. the tool itself or in the manual pages at
  34. `perf(1) <https://linux.die.net/man/1/perf>`__.
  35. perf Setup
  36. ----------
  37. For this section, we'll assume you've already performed the basic setup
  38. outlined in the ":ref:`profile-manual/intro:General Setup`" section.
  39. In particular, you'll get the most mileage out of perf if you profile an
  40. image built with the following in your ``local.conf`` file::
  41. INHIBIT_PACKAGE_STRIP = "1"
  42. perf runs on the target system for the most part. You can archive
  43. profile data and copy it to the host for analysis, but for the rest of
  44. this document we assume you're connected to the host through SSH and will be
  45. running the perf commands on the target.
  46. Basic perf Usage
  47. ----------------
  48. The perf tool is pretty much self-documenting. To remind yourself of the
  49. available commands, just type ``perf``, which will show you basic usage
  50. along with the available perf subcommands::
  51. root@crownbay:~# perf
  52. usage: perf [--version] [--help] COMMAND [ARGS]
  53. The most commonly used perf commands are:
  54. annotate Read perf.data (created by perf record) and display annotated code
  55. archive Create archive with object files with build-ids found in perf.data file
  56. bench General framework for benchmark suites
  57. buildid-cache Manage build-id cache.
  58. buildid-list List the buildids in a perf.data file
  59. diff Read two perf.data files and display the differential profile
  60. evlist List the event names in a perf.data file
  61. inject Filter to augment the events stream with additional information
  62. kmem Tool to trace/measure kernel memory(slab) properties
  63. kvm Tool to trace/measure kvm guest os
  64. list List all symbolic event types
  65. lock Analyze lock events
  66. probe Define new dynamic tracepoints
  67. record Run a command and record its profile into perf.data
  68. report Read perf.data (created by perf record) and display the profile
  69. sched Tool to trace/measure scheduler properties (latencies)
  70. script Read perf.data (created by perf record) and display trace output
  71. stat Run a command and gather performance counter statistics
  72. test Runs sanity tests.
  73. timechart Tool to visualize total system behavior during a workload
  74. top System profiling tool.
  75. See 'perf help COMMAND' for more information on a specific command.
  76. Using perf to do Basic Profiling
  77. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  78. As a simple test case, we'll profile the ``wget`` of a fairly large file,
  79. which is a minimally interesting case because it has both file and
  80. network I/O aspects, and at least in the case of standard Yocto images,
  81. it's implemented as part of BusyBox, so the methods we use to analyze it
  82. can be used in a similar way to the whole host of supported BusyBox
  83. applets in Yocto::
  84. root@crownbay:~# rm linux-2.6.19.2.tar.bz2; \
  85. wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
  86. The quickest and easiest way to get some basic overall data about what's
  87. going on for a particular workload is to profile it using ``perf stat``.
  88. This command basically profiles using a few default counters and displays
  89. the summed counts at the end of the run::
  90. root@crownbay:~# perf stat wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
  91. Connecting to downloads.yoctoproject.org (140.211.169.59:80)
  92. linux-2.6.19.2.tar.b 100% |***************************************************| 41727k 0:00:00 ETA
  93. Performance counter stats for 'wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2':
  94. 4597.223902 task-clock # 0.077 CPUs utilized
  95. 23568 context-switches # 0.005 M/sec
  96. 68 CPU-migrations # 0.015 K/sec
  97. 241 page-faults # 0.052 K/sec
  98. 3045817293 cycles # 0.663 GHz
  99. <not supported> stalled-cycles-frontend
  100. <not supported> stalled-cycles-backend
  101. 858909167 instructions # 0.28 insns per cycle
  102. 165441165 branches # 35.987 M/sec
  103. 19550329 branch-misses # 11.82% of all branches
  104. 59.836627620 seconds time elapsed
  105. Such a simple-minded test doesn't always yield much of interest, but sometimes
  106. it does (see the :yocto_bugs:`Slow write speed on live images with denzil
  107. </show_bug.cgi?id=3049>` bug report).
  108. Also, note that ``perf stat`` isn't restricted to a fixed set of counters
  109. --- basically any event listed in the output of ``perf list`` can be tallied
  110. by ``perf stat``. For example, suppose we wanted to see a summary of all
  111. the events related to kernel memory allocation/freeing along with cache
  112. hits and misses::
  113. root@crownbay:~# perf stat -e kmem:* -e cache-references -e cache-misses wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
  114. Connecting to downloads.yoctoproject.org (140.211.169.59:80)
  115. linux-2.6.19.2.tar.b 100% |***************************************************| 41727k 0:00:00 ETA
  116. Performance counter stats for 'wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2':
  117. 5566 kmem:kmalloc
  118. 125517 kmem:kmem_cache_alloc
  119. 0 kmem:kmalloc_node
  120. 0 kmem:kmem_cache_alloc_node
  121. 34401 kmem:kfree
  122. 69920 kmem:kmem_cache_free
  123. 133 kmem:mm_page_free
  124. 41 kmem:mm_page_free_batched
  125. 11502 kmem:mm_page_alloc
  126. 11375 kmem:mm_page_alloc_zone_locked
  127. 0 kmem:mm_page_pcpu_drain
  128. 0 kmem:mm_page_alloc_extfrag
  129. 66848602 cache-references
  130. 2917740 cache-misses # 4.365 % of all cache refs
  131. 44.831023415 seconds time elapsed
  132. As you can see, ``perf stat`` gives us a nice easy
  133. way to get a quick overview of what might be happening for a set of
  134. events, but normally we'd need a little more detail in order to
  135. understand what's going on in a way that we can act on in a useful way.
  136. To dive down into a next level of detail, we can use ``perf record`` /
  137. ``perf report`` which will collect profiling data and present it to use using an
  138. interactive text-based UI (or just as text if we specify ``--stdio`` to
  139. ``perf report``).
  140. As our first attempt at profiling this workload, we'll just run ``perf
  141. record``, handing it the workload we want to profile (everything after
  142. ``perf record`` and any perf options we hand it --- here none, will be
  143. executed in a new shell). perf collects samples until the process exits
  144. and records them in a file named ``perf.data`` in the current working
  145. directory::
  146. root@crownbay:~# perf record wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
  147. Connecting to downloads.yoctoproject.org (140.211.169.59:80)
  148. linux-2.6.19.2.tar.b 100% |************************************************| 41727k 0:00:00 ETA
  149. [ perf record: Woken up 1 times to write data ]
  150. [ perf record: Captured and wrote 0.176 MB perf.data (~7700 samples) ]
  151. To see the results in a
  152. "text-based UI" (tui), just run ``perf report``, which will read the
  153. perf.data file in the current working directory and display the results
  154. in an interactive UI::
  155. root@crownbay:~# perf report
  156. .. image:: figures/perf-wget-flat-stripped.png
  157. :align: center
  158. The above screenshot displays a "flat" profile, one entry for each
  159. "bucket" corresponding to the functions that were profiled during the
  160. profiling run, ordered from the most popular to the least (perf has
  161. options to sort in various orders and keys as well as display entries
  162. only above a certain threshold and so on --- see the perf documentation
  163. for details). Note that this includes both user space functions (entries
  164. containing a ``[.]``) and kernel functions accounted to the process (entries
  165. containing a ``[k]``). perf has command-line modifiers that can be used to
  166. restrict the profiling to kernel or user space, among others.
  167. Notice also that the above report shows an entry for ``busybox``, which is
  168. the executable that implements ``wget`` in Yocto, but that instead of a
  169. useful function name in that entry, it displays a not-so-friendly hex
  170. value instead. The steps below will show how to fix that problem.
  171. Before we do that, however, let's try running a different profile, one
  172. which shows something a little more interesting. The only difference
  173. between the new profile and the previous one is that we'll add the ``-g``
  174. option, which will record not just the address of a sampled function,
  175. but the entire call chain to the sampled function as well::
  176. root@crownbay:~# perf record -g wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
  177. Connecting to downloads.yoctoproject.org (140.211.169.59:80)
  178. linux-2.6.19.2.tar.b 100% |************************************************| 41727k 0:00:00 ETA
  179. [ perf record: Woken up 3 times to write data ]
  180. [ perf record: Captured and wrote 0.652 MB perf.data (~28476 samples) ]
  181. root@crownbay:~# perf report
  182. .. image:: figures/perf-wget-g-copy-to-user-expanded-stripped.png
  183. :align: center
  184. Using the call graph view, we can actually see not only which functions
  185. took the most time, but we can also see a summary of how those functions
  186. were called and learn something about how the program interacts with the
  187. kernel in the process.
  188. Notice that each entry in the above screenshot now contains a ``+`` on the
  189. left side. This means that we can expand the entry and drill down
  190. into the call chains that feed into that entry. Pressing ``Enter`` on any
  191. one of them will expand the call chain (you can also press ``E`` to expand
  192. them all at the same time or ``C`` to collapse them all).
  193. In the screenshot above, we've toggled the ``__copy_to_user_ll()`` entry
  194. and several subnodes all the way down. This lets us see which call chains
  195. contributed to the profiled ``__copy_to_user_ll()`` function which
  196. contributed 1.77% to the total profile.
  197. As a bit of background explanation for these call chains, think about
  198. what happens at a high level when you run ``wget`` to get a file out on the
  199. network. Basically what happens is that the data comes into the kernel
  200. via the network connection (socket) and is passed to the user space
  201. program ``wget`` (which is actually a part of BusyBox, but that's not
  202. important for now), which takes the buffers the kernel passes to it and
  203. writes it to a disk file to save it.
  204. The part of this process that we're looking at in the above call stacks
  205. is the part where the kernel passes the data it has read from the socket
  206. down to wget i.e. a ``copy-to-user``.
  207. Notice also that here there's also a case where the hex value is
  208. displayed in the call stack, here in the expanded ``sys_clock_gettime()``
  209. function. Later we'll see it resolve to a user space function call in
  210. BusyBox.
  211. .. image:: figures/perf-wget-g-copy-from-user-expanded-stripped.png
  212. :align: center
  213. The above screenshot shows the other half of the journey for the data ---
  214. from the ``wget`` program's user space buffers to disk. To get the buffers to
  215. disk, the wget program issues a ``write(2)``, which does a ``copy-from-user`` to
  216. the kernel, which then takes care via some circuitous path (probably
  217. also present somewhere in the profile data), to get it safely to disk.
  218. Now that we've seen the basic layout of the profile data and the basics
  219. of how to extract useful information out of it, let's get back to the
  220. task at hand and see if we can get some basic idea about where the time
  221. is spent in the program we're profiling, wget. Remember that wget is
  222. actually implemented as an applet in BusyBox, so while the process name
  223. is ``wget``, the executable we're actually interested in is ``busybox``.
  224. Therefore, let's expand the first entry containing BusyBox:
  225. .. image:: figures/perf-wget-busybox-expanded-stripped.png
  226. :align: center
  227. Again, before we expanded we saw that the function was labeled with a
  228. hex value instead of a symbol as with most of the kernel entries.
  229. Expanding the BusyBox entry doesn't make it any better.
  230. The problem is that perf can't find the symbol information for the
  231. ``busybox`` binary, which is actually stripped out by the Yocto build
  232. system.
  233. One way around that is to put the following in your ``local.conf`` file
  234. when you build the image::
  235. INHIBIT_PACKAGE_STRIP = "1"
  236. However, we already have an image with the binaries stripped, so
  237. what can we do to get perf to resolve the symbols? Basically we need to
  238. install the debugging information for the BusyBox package.
  239. To generate the debug info for the packages in the image, we can add
  240. ``dbg-pkgs`` to :term:`EXTRA_IMAGE_FEATURES` in ``local.conf``. For example::
  241. EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile dbg-pkgs"
  242. Additionally, in order to generate the type of debugging information that perf
  243. understands, we also need to set :term:`PACKAGE_DEBUG_SPLIT_STYLE`
  244. in the ``local.conf`` file::
  245. PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory'
  246. Once we've done that, we can install the debugging information for BusyBox. The
  247. debug packages once built can be found in ``build/tmp/deploy/rpm/*``
  248. on the host system. Find the ``busybox-dbg-...rpm`` file and copy it
  249. to the target. For example::
  250. [trz@empanada core2]$ scp /home/trz/yocto/crownbay-tracing-dbg/build/tmp/deploy/rpm/core2_32/busybox-dbg-1.20.2-r2.core2_32.rpm root@192.168.1.31:
  251. busybox-dbg-1.20.2-r2.core2_32.rpm 100% 1826KB 1.8MB/s 00:01
  252. Now install the debug RPM on the target::
  253. root@crownbay:~# rpm -i busybox-dbg-1.20.2-r2.core2_32.rpm
  254. Now that the debugging information is installed, we see that the BusyBox entries now display
  255. their functions symbolically:
  256. .. image:: figures/perf-wget-busybox-debuginfo.png
  257. :align: center
  258. If we expand one of the entries and press ``Enter`` on a leaf node, we're
  259. presented with a menu of actions we can take to get more information
  260. related to that entry:
  261. .. image:: figures/perf-wget-busybox-dso-zoom-menu.png
  262. :align: center
  263. One of these actions allows us to show a view that displays a
  264. busybox-centric view of the profiled functions (in this case we've also
  265. expanded all the nodes using the ``E`` key):
  266. .. image:: figures/perf-wget-busybox-dso-zoom.png
  267. :align: center
  268. Finally, we can see that now that the BusyBox debugging information is installed,
  269. the previously unresolved symbol in the ``sys_clock_gettime()`` entry
  270. mentioned previously is now resolved, and shows that the
  271. ``sys_clock_gettime`` system call that was the source of 6.75% of the
  272. ``copy-to-user`` overhead was initiated by the ``handle_input()`` BusyBox
  273. function:
  274. .. image:: figures/perf-wget-g-copy-to-user-expanded-debuginfo.png
  275. :align: center
  276. At the lowest level of detail, we can dive down to the assembly level
  277. and see which instructions caused the most overhead in a function.
  278. Pressing ``Enter`` on the ``udhcpc_main`` function, we're again presented
  279. with a menu:
  280. .. image:: figures/perf-wget-busybox-annotate-menu.png
  281. :align: center
  282. Selecting ``Annotate udhcpc_main``, we get a detailed listing of
  283. percentages by instruction for the ``udhcpc_main`` function. From the
  284. display, we can see that over 50% of the time spent in this function is
  285. taken up by a couple tests and the move of a constant (1) to a register:
  286. .. image:: figures/perf-wget-busybox-annotate-udhcpc.png
  287. :align: center
  288. As a segue into tracing, let's try another profile using a different
  289. counter, something other than the default ``cycles``.
  290. The tracing and profiling infrastructure in Linux has become unified in
  291. a way that allows us to use the same tool with a completely different
  292. set of counters, not just the standard hardware counters that
  293. traditional tools have had to restrict themselves to (the
  294. traditional tools can now actually make use of the expanded possibilities now
  295. available to them, and in some cases have, as mentioned previously).
  296. We can get a list of the available events that can be used to profile a
  297. workload via ``perf list``::
  298. root@crownbay:~# perf list
  299. List of pre-defined events (to be used in -e):
  300. cpu-cycles OR cycles [Hardware event]
  301. stalled-cycles-frontend OR idle-cycles-frontend [Hardware event]
  302. stalled-cycles-backend OR idle-cycles-backend [Hardware event]
  303. instructions [Hardware event]
  304. cache-references [Hardware event]
  305. cache-misses [Hardware event]
  306. branch-instructions OR branches [Hardware event]
  307. branch-misses [Hardware event]
  308. bus-cycles [Hardware event]
  309. ref-cycles [Hardware event]
  310. cpu-clock [Software event]
  311. task-clock [Software event]
  312. page-faults OR faults [Software event]
  313. minor-faults [Software event]
  314. major-faults [Software event]
  315. context-switches OR cs [Software event]
  316. cpu-migrations OR migrations [Software event]
  317. alignment-faults [Software event]
  318. emulation-faults [Software event]
  319. L1-dcache-loads [Hardware cache event]
  320. L1-dcache-load-misses [Hardware cache event]
  321. L1-dcache-prefetch-misses [Hardware cache event]
  322. L1-icache-loads [Hardware cache event]
  323. L1-icache-load-misses [Hardware cache event]
  324. .
  325. .
  326. .
  327. rNNN [Raw hardware event descriptor]
  328. cpu/t1=v1[,t2=v2,t3 ...]/modifier [Raw hardware event descriptor]
  329. (see 'perf list --help' on how to encode it)
  330. mem:<addr>[:access] [Hardware breakpoint]
  331. sunrpc:rpc_call_status [Tracepoint event]
  332. sunrpc:rpc_bind_status [Tracepoint event]
  333. sunrpc:rpc_connect_status [Tracepoint event]
  334. sunrpc:rpc_task_begin [Tracepoint event]
  335. skb:kfree_skb [Tracepoint event]
  336. skb:consume_skb [Tracepoint event]
  337. skb:skb_copy_datagram_iovec [Tracepoint event]
  338. net:net_dev_xmit [Tracepoint event]
  339. net:net_dev_queue [Tracepoint event]
  340. net:netif_receive_skb [Tracepoint event]
  341. net:netif_rx [Tracepoint event]
  342. napi:napi_poll [Tracepoint event]
  343. sock:sock_rcvqueue_full [Tracepoint event]
  344. sock:sock_exceed_buf_limit [Tracepoint event]
  345. udp:udp_fail_queue_rcv_skb [Tracepoint event]
  346. hda:hda_send_cmd [Tracepoint event]
  347. hda:hda_get_response [Tracepoint event]
  348. hda:hda_bus_reset [Tracepoint event]
  349. scsi:scsi_dispatch_cmd_start [Tracepoint event]
  350. scsi:scsi_dispatch_cmd_error [Tracepoint event]
  351. scsi:scsi_eh_wakeup [Tracepoint event]
  352. drm:drm_vblank_event [Tracepoint event]
  353. drm:drm_vblank_event_queued [Tracepoint event]
  354. drm:drm_vblank_event_delivered [Tracepoint event]
  355. random:mix_pool_bytes [Tracepoint event]
  356. random:mix_pool_bytes_nolock [Tracepoint event]
  357. random:credit_entropy_bits [Tracepoint event]
  358. gpio:gpio_direction [Tracepoint event]
  359. gpio:gpio_value [Tracepoint event]
  360. block:block_rq_abort [Tracepoint event]
  361. block:block_rq_requeue [Tracepoint event]
  362. block:block_rq_issue [Tracepoint event]
  363. block:block_bio_bounce [Tracepoint event]
  364. block:block_bio_complete [Tracepoint event]
  365. block:block_bio_backmerge [Tracepoint event]
  366. .
  367. .
  368. writeback:writeback_wake_thread [Tracepoint event]
  369. writeback:writeback_wake_forker_thread [Tracepoint event]
  370. writeback:writeback_bdi_register [Tracepoint event]
  371. .
  372. .
  373. writeback:writeback_single_inode_requeue [Tracepoint event]
  374. writeback:writeback_single_inode [Tracepoint event]
  375. kmem:kmalloc [Tracepoint event]
  376. kmem:kmem_cache_alloc [Tracepoint event]
  377. kmem:mm_page_alloc [Tracepoint event]
  378. kmem:mm_page_alloc_zone_locked [Tracepoint event]
  379. kmem:mm_page_pcpu_drain [Tracepoint event]
  380. kmem:mm_page_alloc_extfrag [Tracepoint event]
  381. vmscan:mm_vmscan_kswapd_sleep [Tracepoint event]
  382. vmscan:mm_vmscan_kswapd_wake [Tracepoint event]
  383. vmscan:mm_vmscan_wakeup_kswapd [Tracepoint event]
  384. vmscan:mm_vmscan_direct_reclaim_begin [Tracepoint event]
  385. .
  386. .
  387. module:module_get [Tracepoint event]
  388. module:module_put [Tracepoint event]
  389. module:module_request [Tracepoint event]
  390. sched:sched_kthread_stop [Tracepoint event]
  391. sched:sched_wakeup [Tracepoint event]
  392. sched:sched_wakeup_new [Tracepoint event]
  393. sched:sched_process_fork [Tracepoint event]
  394. sched:sched_process_exec [Tracepoint event]
  395. sched:sched_stat_runtime [Tracepoint event]
  396. rcu:rcu_utilization [Tracepoint event]
  397. workqueue:workqueue_queue_work [Tracepoint event]
  398. workqueue:workqueue_execute_end [Tracepoint event]
  399. signal:signal_generate [Tracepoint event]
  400. signal:signal_deliver [Tracepoint event]
  401. timer:timer_init [Tracepoint event]
  402. timer:timer_start [Tracepoint event]
  403. timer:hrtimer_cancel [Tracepoint event]
  404. timer:itimer_state [Tracepoint event]
  405. timer:itimer_expire [Tracepoint event]
  406. irq:irq_handler_entry [Tracepoint event]
  407. irq:irq_handler_exit [Tracepoint event]
  408. irq:softirq_entry [Tracepoint event]
  409. irq:softirq_exit [Tracepoint event]
  410. irq:softirq_raise [Tracepoint event]
  411. printk:console [Tracepoint event]
  412. task:task_newtask [Tracepoint event]
  413. task:task_rename [Tracepoint event]
  414. syscalls:sys_enter_socketcall [Tracepoint event]
  415. syscalls:sys_exit_socketcall [Tracepoint event]
  416. .
  417. .
  418. .
  419. syscalls:sys_enter_unshare [Tracepoint event]
  420. syscalls:sys_exit_unshare [Tracepoint event]
  421. raw_syscalls:sys_enter [Tracepoint event]
  422. raw_syscalls:sys_exit [Tracepoint event]
  423. .. admonition:: Tying it Together
  424. These are exactly the same set of events defined by the trace event
  425. subsystem and exposed by ftrace / trace-cmd / KernelShark as files in
  426. ``/sys/kernel/debug/tracing/events``, by SystemTap as
  427. kernel.trace("tracepoint_name") and (partially) accessed by LTTng.
  428. Only a subset of these would be of interest to us when looking at this
  429. workload, so let's choose the most likely subsystems (identified by the
  430. string before the colon in the ``Tracepoint`` events) and do a ``perf stat``
  431. run using only those subsystem wildcards::
  432. root@crownbay:~# perf stat -e skb:* -e net:* -e napi:* -e sched:* -e workqueue:* -e irq:* -e syscalls:* wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
  433. Performance counter stats for 'wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2':
  434. 23323 skb:kfree_skb
  435. 0 skb:consume_skb
  436. 49897 skb:skb_copy_datagram_iovec
  437. 6217 net:net_dev_xmit
  438. 6217 net:net_dev_queue
  439. 7962 net:netif_receive_skb
  440. 2 net:netif_rx
  441. 8340 napi:napi_poll
  442. 0 sched:sched_kthread_stop
  443. 0 sched:sched_kthread_stop_ret
  444. 3749 sched:sched_wakeup
  445. 0 sched:sched_wakeup_new
  446. 0 sched:sched_switch
  447. 29 sched:sched_migrate_task
  448. 0 sched:sched_process_free
  449. 1 sched:sched_process_exit
  450. 0 sched:sched_wait_task
  451. 0 sched:sched_process_wait
  452. 0 sched:sched_process_fork
  453. 1 sched:sched_process_exec
  454. 0 sched:sched_stat_wait
  455. 2106519415641 sched:sched_stat_sleep
  456. 0 sched:sched_stat_iowait
  457. 147453613 sched:sched_stat_blocked
  458. 12903026955 sched:sched_stat_runtime
  459. 0 sched:sched_pi_setprio
  460. 3574 workqueue:workqueue_queue_work
  461. 3574 workqueue:workqueue_activate_work
  462. 0 workqueue:workqueue_execute_start
  463. 0 workqueue:workqueue_execute_end
  464. 16631 irq:irq_handler_entry
  465. 16631 irq:irq_handler_exit
  466. 28521 irq:softirq_entry
  467. 28521 irq:softirq_exit
  468. 28728 irq:softirq_raise
  469. 1 syscalls:sys_enter_sendmmsg
  470. 1 syscalls:sys_exit_sendmmsg
  471. 0 syscalls:sys_enter_recvmmsg
  472. 0 syscalls:sys_exit_recvmmsg
  473. 14 syscalls:sys_enter_socketcall
  474. 14 syscalls:sys_exit_socketcall
  475. .
  476. .
  477. .
  478. 16965 syscalls:sys_enter_read
  479. 16965 syscalls:sys_exit_read
  480. 12854 syscalls:sys_enter_write
  481. 12854 syscalls:sys_exit_write
  482. .
  483. .
  484. .
  485. 58.029710972 seconds time elapsed
  486. Let's pick one of these tracepoints
  487. and tell perf to do a profile using it as the sampling event::
  488. root@crownbay:~# perf record -g -e sched:sched_wakeup wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
  489. .. image:: figures/sched-wakeup-profile.png
  490. :align: center
  491. The screenshot above shows the results of running a profile using
  492. sched:sched_switch tracepoint, which shows the relative costs of various
  493. paths to ``sched_wakeup`` (note that ``sched_wakeup`` is the name of the
  494. tracepoint --- it's actually defined just inside ``ttwu_do_wakeup()``, which
  495. accounts for the function name actually displayed in the profile:
  496. .. code-block:: c
  497. /*
  498. * Mark the task runnable and perform wakeup-preemption.
  499. */
  500. static void
  501. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  502. {
  503. trace_sched_wakeup(p, true);
  504. .
  505. .
  506. .
  507. }
  508. A couple of the more interesting
  509. call chains are expanded and displayed above, basically some network
  510. receive paths that presumably end up waking up wget (BusyBox) when
  511. network data is ready.
  512. Note that because tracepoints are normally used for tracing, the default
  513. sampling period for tracepoints is ``1`` i.e. for tracepoints perf will
  514. sample on every event occurrence (this can be changed using the ``-c``
  515. option). This is in contrast to hardware counters such as for example
  516. the default ``cycles`` hardware counter used for normal profiling, where
  517. sampling periods are much higher (in the thousands) because profiling
  518. should have as low an overhead as possible and sampling on every cycle
  519. would be prohibitively expensive.
  520. Using perf to do Basic Tracing
  521. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  522. Profiling is a great tool for solving many problems or for getting a
  523. high-level view of what's going on with a workload or across the system.
  524. It is however by definition an approximation, as suggested by the most
  525. prominent word associated with it, ``sampling``. On the one hand, it
  526. allows a representative picture of what's going on in the system to be
  527. cheaply taken, but alternatively, that cheapness limits its utility
  528. when that data suggests a need to "dive down" more deeply to discover
  529. what's really going on. In such cases, the only way to see what's really
  530. going on is to be able to look at (or summarize more intelligently) the
  531. individual steps that go into the higher-level behavior exposed by the
  532. coarse-grained profiling data.
  533. As a concrete example, we can trace all the events we think might be
  534. applicable to our workload::
  535. root@crownbay:~# perf record -g -e skb:* -e net:* -e napi:* -e sched:sched_switch -e sched:sched_wakeup -e irq:*
  536. -e syscalls:sys_enter_read -e syscalls:sys_exit_read -e syscalls:sys_enter_write -e syscalls:sys_exit_write
  537. wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
  538. We can look at the raw trace output using ``perf script`` with no
  539. arguments::
  540. root@crownbay:~# perf script
  541. perf 1262 [000] 11624.857082: sys_exit_read: 0x0
  542. perf 1262 [000] 11624.857193: sched_wakeup: comm=migration/0 pid=6 prio=0 success=1 target_cpu=000
  543. wget 1262 [001] 11624.858021: softirq_raise: vec=1 [action=TIMER]
  544. wget 1262 [001] 11624.858074: softirq_entry: vec=1 [action=TIMER]
  545. wget 1262 [001] 11624.858081: softirq_exit: vec=1 [action=TIMER]
  546. wget 1262 [001] 11624.858166: sys_enter_read: fd: 0x0003, buf: 0xbf82c940, count: 0x0200
  547. wget 1262 [001] 11624.858177: sys_exit_read: 0x200
  548. wget 1262 [001] 11624.858878: kfree_skb: skbaddr=0xeb248d80 protocol=0 location=0xc15a5308
  549. wget 1262 [001] 11624.858945: kfree_skb: skbaddr=0xeb248000 protocol=0 location=0xc15a5308
  550. wget 1262 [001] 11624.859020: softirq_raise: vec=1 [action=TIMER]
  551. wget 1262 [001] 11624.859076: softirq_entry: vec=1 [action=TIMER]
  552. wget 1262 [001] 11624.859083: softirq_exit: vec=1 [action=TIMER]
  553. wget 1262 [001] 11624.859167: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
  554. wget 1262 [001] 11624.859192: sys_exit_read: 0x1d7
  555. wget 1262 [001] 11624.859228: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
  556. wget 1262 [001] 11624.859233: sys_exit_read: 0x0
  557. wget 1262 [001] 11624.859573: sys_enter_read: fd: 0x0003, buf: 0xbf82c580, count: 0x0200
  558. wget 1262 [001] 11624.859584: sys_exit_read: 0x200
  559. wget 1262 [001] 11624.859864: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
  560. wget 1262 [001] 11624.859888: sys_exit_read: 0x400
  561. wget 1262 [001] 11624.859935: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
  562. wget 1262 [001] 11624.859944: sys_exit_read: 0x400
  563. This gives us a detailed timestamped sequence of events that occurred within the
  564. workload with respect to those events.
  565. In many ways, profiling can be viewed as a subset of tracing ---
  566. theoretically, if you have a set of trace events that's sufficient to
  567. capture all the important aspects of a workload, you can derive any of
  568. the results or views that a profiling run can.
  569. Another aspect of traditional profiling is that while powerful in many
  570. ways, it's limited by the granularity of the underlying data. Profiling
  571. tools offer various ways of sorting and presenting the sample data,
  572. which make it much more useful and amenable to user experimentation, but
  573. in the end it can't be used in an open-ended way to extract data that
  574. just isn't present as a consequence of the fact that conceptually, most
  575. of it has been thrown away.
  576. Full-blown detailed tracing data does however offer the opportunity to
  577. manipulate and present the information collected during a tracing run in
  578. an infinite variety of ways.
  579. Another way to look at it is that there are only so many ways that the
  580. 'primitive' counters can be used on their own to generate interesting
  581. output; to get anything more complicated than simple counts requires
  582. some amount of additional logic, which is typically specific to the
  583. problem at hand. For example, if we wanted to make use of a 'counter'
  584. that maps to the value of the time difference between when a process was
  585. scheduled to run on a processor and the time it actually ran, we
  586. wouldn't expect such a counter to exist on its own, but we could derive
  587. one called say ``wakeup_latency`` and use it to extract a useful view of
  588. that metric from trace data. Likewise, we really can't figure out from
  589. standard profiling tools how much data every process on the system reads
  590. and writes, along with how many of those reads and writes fail
  591. completely. If we have sufficient trace data, however, we could with the
  592. right tools easily extract and present that information, but we'd need
  593. something other than ready-made profiling tools to do that.
  594. Luckily, there is a general-purpose way to handle such needs, called
  595. "programming languages". Making programming languages easily available
  596. to apply to such problems given the specific format of data is called a
  597. 'programming language binding' for that data and language. perf supports
  598. two programming language bindings, one for Python and one for Perl.
  599. .. admonition:: Tying it Together
  600. Language bindings for manipulating and aggregating trace data are of
  601. course not a new idea. One of the first projects to do this was IBM's
  602. DProbes dpcc compiler, an ANSI C compiler which targeted a low-level
  603. assembly language running on an in-kernel interpreter on the target
  604. system. This is exactly analogous to what Sun's DTrace did, except
  605. that DTrace invented its own language for the purpose. SystemTap,
  606. heavily inspired by DTrace, also created its own one-off language,
  607. but rather than running the product on an in-kernel interpreter,
  608. created an elaborate compiler-based machinery to translate its
  609. language into kernel modules written in C.
  610. Now that we have the trace data in ``perf.data``, we can use ``perf script
  611. -g`` to generate a skeleton script with handlers for the read / write
  612. entry / exit events we recorded::
  613. root@crownbay:~# perf script -g python
  614. generated Python script: perf-script.py
  615. The skeleton script just creates a Python function for each event type in the
  616. ``perf.data`` file. The body of each function just prints the event name along
  617. with its parameters. For example:
  618. .. code-block:: python
  619. def net__netif_rx(event_name, context, common_cpu,
  620. common_secs, common_nsecs, common_pid, common_comm,
  621. skbaddr, len, name):
  622. print_header(event_name, common_cpu, common_secs, common_nsecs,
  623. common_pid, common_comm)
  624. print "skbaddr=%u, len=%u, name=%s\n" % (skbaddr, len, name),
  625. We can run that script directly to print all of the events contained in the
  626. ``perf.data`` file::
  627. root@crownbay:~# perf script -s perf-script.py
  628. in trace_begin
  629. syscalls__sys_exit_read 0 11624.857082795 1262 perf nr=3, ret=0
  630. sched__sched_wakeup 0 11624.857193498 1262 perf comm=migration/0, pid=6, prio=0, success=1, target_cpu=0
  631. irq__softirq_raise 1 11624.858021635 1262 wget vec=TIMER
  632. irq__softirq_entry 1 11624.858074075 1262 wget vec=TIMER
  633. irq__softirq_exit 1 11624.858081389 1262 wget vec=TIMER
  634. syscalls__sys_enter_read 1 11624.858166434 1262 wget nr=3, fd=3, buf=3213019456, count=512
  635. syscalls__sys_exit_read 1 11624.858177924 1262 wget nr=3, ret=512
  636. skb__kfree_skb 1 11624.858878188 1262 wget skbaddr=3945041280, location=3243922184, protocol=0
  637. skb__kfree_skb 1 11624.858945608 1262 wget skbaddr=3945037824, location=3243922184, protocol=0
  638. irq__softirq_raise 1 11624.859020942 1262 wget vec=TIMER
  639. irq__softirq_entry 1 11624.859076935 1262 wget vec=TIMER
  640. irq__softirq_exit 1 11624.859083469 1262 wget vec=TIMER
  641. syscalls__sys_enter_read 1 11624.859167565 1262 wget nr=3, fd=3, buf=3077701632, count=1024
  642. syscalls__sys_exit_read 1 11624.859192533 1262 wget nr=3, ret=471
  643. syscalls__sys_enter_read 1 11624.859228072 1262 wget nr=3, fd=3, buf=3077701632, count=1024
  644. syscalls__sys_exit_read 1 11624.859233707 1262 wget nr=3, ret=0
  645. syscalls__sys_enter_read 1 11624.859573008 1262 wget nr=3, fd=3, buf=3213018496, count=512
  646. syscalls__sys_exit_read 1 11624.859584818 1262 wget nr=3, ret=512
  647. syscalls__sys_enter_read 1 11624.859864562 1262 wget nr=3, fd=3, buf=3077701632, count=1024
  648. syscalls__sys_exit_read 1 11624.859888770 1262 wget nr=3, ret=1024
  649. syscalls__sys_enter_read 1 11624.859935140 1262 wget nr=3, fd=3, buf=3077701632, count=1024
  650. syscalls__sys_exit_read 1 11624.859944032 1262 wget nr=3, ret=1024
  651. That in itself isn't very useful; after all, we can accomplish pretty much the
  652. same thing by just running ``perf script`` without arguments in the same
  653. directory as the ``perf.data`` file.
  654. We can however replace the print statements in the generated function
  655. bodies with whatever we want, and thereby make it infinitely more
  656. useful.
  657. As a simple example, let's just replace the print statements in the
  658. function bodies with a simple function that does nothing but increment a
  659. per-event count. When the program is run against a perf.data file, each
  660. time a particular event is encountered, a tally is incremented for that
  661. event. For example:
  662. .. code-block:: python
  663. def net__netif_rx(event_name, context, common_cpu,
  664. common_secs, common_nsecs, common_pid, common_comm,
  665. skbaddr, len, name):
  666. inc_counts(event_name)
  667. Each event handler function in the generated code
  668. is modified to do this. For convenience, we define a common function
  669. called ``inc_counts()`` that each handler calls; ``inc_counts()`` just tallies
  670. a count for each event using the ``counts`` hash, which is a specialized
  671. hash function that does Perl-like autovivification, a capability that's
  672. extremely useful for kinds of multi-level aggregation commonly used in
  673. processing traces (see perf's documentation on the Python language
  674. binding for details):
  675. .. code-block:: python
  676. counts = autodict()
  677. def inc_counts(event_name):
  678. try:
  679. counts[event_name] += 1
  680. except TypeError:
  681. counts[event_name] = 1
  682. Finally, at the end of the trace processing run, we want to print the
  683. result of all the per-event tallies. For that, we use the special
  684. ``trace_end()`` function:
  685. .. code-block:: python
  686. def trace_end():
  687. for event_name, count in counts.iteritems():
  688. print "%-40s %10s\n" % (event_name, count)
  689. The end result is a summary of all the events recorded in the trace::
  690. skb__skb_copy_datagram_iovec 13148
  691. irq__softirq_entry 4796
  692. irq__irq_handler_exit 3805
  693. irq__softirq_exit 4795
  694. syscalls__sys_enter_write 8990
  695. net__net_dev_xmit 652
  696. skb__kfree_skb 4047
  697. sched__sched_wakeup 1155
  698. irq__irq_handler_entry 3804
  699. irq__softirq_raise 4799
  700. net__net_dev_queue 652
  701. syscalls__sys_enter_read 17599
  702. net__netif_receive_skb 1743
  703. syscalls__sys_exit_read 17598
  704. net__netif_rx 2
  705. napi__napi_poll 1877
  706. syscalls__sys_exit_write 8990
  707. Note that this is
  708. pretty much exactly the same information we get from ``perf stat``, which
  709. goes a little way to support the idea mentioned previously that given
  710. the right kind of trace data, higher-level profiling-type summaries can
  711. be derived from it.
  712. Documentation on using the `'perf script' python
  713. binding <https://linux.die.net/man/1/perf-script-python>`__.
  714. System-Wide Tracing and Profiling
  715. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  716. The examples so far have focused on tracing a particular program or
  717. workload --- that is, every profiling run has specified the program
  718. to profile in the command-line e.g. ``perf record wget ...``.
  719. It's also possible, and more interesting in many cases, to run a
  720. system-wide profile or trace while running the workload in a separate
  721. shell.
  722. To do system-wide profiling or tracing, you typically use the ``-a`` flag to
  723. ``perf record``.
  724. To demonstrate this, open up one window and start the profile using the
  725. ``-a`` flag (press ``Ctrl-C`` to stop tracing)::
  726. root@crownbay:~# perf record -g -a
  727. ^C[ perf record: Woken up 6 times to write data ]
  728. [ perf record: Captured and wrote 1.400 MB perf.data (~61172 samples) ]
  729. In another window, run the ``wget`` test::
  730. root@crownbay:~# wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
  731. Connecting to downloads.yoctoproject.org (140.211.169.59:80)
  732. linux-2.6.19.2.tar.b 100% \|*******************************\| 41727k 0:00:00 ETA
  733. Here we see entries not only for our ``wget`` load, but for
  734. other processes running on the system as well:
  735. .. image:: figures/perf-systemwide.png
  736. :align: center
  737. In the snapshot above, we can see call chains that originate in ``libc``, and
  738. a call chain from ``Xorg`` that demonstrates that we're using a proprietary X
  739. driver in user space (notice the presence of ``PVR`` and some other
  740. unresolvable symbols in the expanded ``Xorg`` call chain).
  741. Note also that we have both kernel and user space entries in the above
  742. snapshot. We can also tell perf to focus on user space but providing a
  743. modifier, in this case ``u``, to the ``cycles`` hardware counter when we
  744. record a profile::
  745. root@crownbay:~# perf record -g -a -e cycles:u
  746. ^C[ perf record: Woken up 2 times to write data ]
  747. [ perf record: Captured and wrote 0.376 MB perf.data (~16443 samples) ]
  748. .. image:: figures/perf-report-cycles-u.png
  749. :align: center
  750. Notice in the screenshot above, we see only user space entries (``[.]``)
  751. Finally, we can press ``Enter`` on a leaf node and select the ``Zoom into
  752. DSO`` menu item to show only entries associated with a specific DSO. In
  753. the screenshot below, we've zoomed into the ``libc`` DSO which shows all
  754. the entries associated with the ``libc-xxx.so`` DSO.
  755. .. image:: figures/perf-systemwide-libc.png
  756. :align: center
  757. We can also use the system-wide ``-a`` switch to do system-wide tracing.
  758. Here we'll trace a couple of scheduler events::
  759. root@crownbay:~# perf record -a -e sched:sched_switch -e sched:sched_wakeup
  760. ^C[ perf record: Woken up 38 times to write data ]
  761. [ perf record: Captured and wrote 9.780 MB perf.data (~427299 samples) ]
  762. We can look at the raw output using ``perf script`` with no arguments::
  763. root@crownbay:~# perf script
  764. perf 1383 [001] 6171.460045: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
  765. perf 1383 [001] 6171.460066: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
  766. kworker/1:1 21 [001] 6171.460093: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120
  767. swapper 0 [000] 6171.468063: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000
  768. swapper 0 [000] 6171.468107: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
  769. kworker/0:3 1209 [000] 6171.468143: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
  770. perf 1383 [001] 6171.470039: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
  771. perf 1383 [001] 6171.470058: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
  772. kworker/1:1 21 [001] 6171.470082: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120
  773. perf 1383 [001] 6171.480035: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
  774. Filtering
  775. ^^^^^^^^^
  776. Notice that there are many events that don't really have anything to
  777. do with what we're interested in, namely events that schedule ``perf``
  778. itself in and out or that wake perf up. We can get rid of those by using
  779. the ``--filter`` option --- for each event we specify using ``-e``, we can add a
  780. ``--filter`` after that to filter out trace events that contain fields with
  781. specific values::
  782. root@crownbay:~# perf record -a -e sched:sched_switch --filter 'next_comm != perf && prev_comm != perf' -e sched:sched_wakeup --filter 'comm != perf'
  783. ^C[ perf record: Woken up 38 times to write data ]
  784. [ perf record: Captured and wrote 9.688 MB perf.data (~423279 samples) ]
  785. root@crownbay:~# perf script
  786. swapper 0 [000] 7932.162180: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
  787. kworker/0:3 1209 [000] 7932.162236: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
  788. perf 1407 [001] 7932.170048: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
  789. perf 1407 [001] 7932.180044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
  790. perf 1407 [001] 7932.190038: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
  791. perf 1407 [001] 7932.200044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
  792. perf 1407 [001] 7932.210044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
  793. perf 1407 [001] 7932.220044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
  794. swapper 0 [001] 7932.230111: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
  795. swapper 0 [001] 7932.230146: sched_switch: prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
  796. kworker/1:1 21 [001] 7932.230205: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=swapper/1 next_pid=0 next_prio=120
  797. swapper 0 [000] 7932.326109: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000
  798. swapper 0 [000] 7932.326171: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
  799. kworker/0:3 1209 [000] 7932.326214: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
  800. In this case, we've filtered out all events that have
  801. ``perf`` in their ``comm``, ``comm_prev`` or ``comm_next`` fields. Notice that
  802. there are still events recorded for perf, but notice that those events
  803. don't have values of ``perf`` for the filtered fields. To completely
  804. filter out anything from perf will require a bit more work, but for the
  805. purpose of demonstrating how to use filters, it's close enough.
  806. .. admonition:: Tying it Together
  807. These are exactly the same set of event filters defined by the trace
  808. event subsystem. See the ftrace / trace-cmd / KernelShark section for more
  809. discussion about these event filters.
  810. .. admonition:: Tying it Together
  811. These event filters are implemented by a special-purpose
  812. pseudo-interpreter in the kernel and are an integral and
  813. indispensable part of the perf design as it relates to tracing.
  814. kernel-based event filters provide a mechanism to precisely throttle
  815. the event stream that appears in user space, where it makes sense to
  816. provide bindings to real programming languages for post-processing the
  817. event stream. This architecture allows for the intelligent and
  818. flexible partitioning of processing between the kernel and user
  819. space. Contrast this with other tools such as SystemTap, which does
  820. all of its processing in the kernel and as such requires a special
  821. project-defined language in order to accommodate that design, or
  822. LTTng, where everything is sent to user space and as such requires a
  823. super-efficient kernel-to-user space transport mechanism in order to
  824. function properly. While perf certainly can benefit from for instance
  825. advances in the design of the transport, it doesn't fundamentally
  826. depend on them. Basically, if you find that your perf tracing
  827. application is causing buffer I/O overruns, it probably means that
  828. you aren't taking enough advantage of the kernel filtering engine.
  829. Using Dynamic Tracepoints
  830. ~~~~~~~~~~~~~~~~~~~~~~~~~
  831. perf isn't restricted to the fixed set of static tracepoints listed by
  832. ``perf list``. Users can also add their own "dynamic" tracepoints anywhere
  833. in the kernel. For example, suppose we want to define our own
  834. tracepoint on ``do_fork()``. We can do that using the ``perf probe`` perf
  835. subcommand::
  836. root@crownbay:~# perf probe do_fork
  837. Added new event:
  838. probe:do_fork (on do_fork)
  839. You can now use it in all perf tools, such as:
  840. perf record -e probe:do_fork -aR sleep 1
  841. Adding a new tracepoint via
  842. ``perf probe`` results in an event with all the expected files and format
  843. in ``/sys/kernel/debug/tracing/events``, just the same as for static
  844. tracepoints (as discussed in more detail in the trace events subsystem
  845. section::
  846. root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# ls -al
  847. drwxr-xr-x 2 root root 0 Oct 28 11:42 .
  848. drwxr-xr-x 3 root root 0 Oct 28 11:42 ..
  849. -rw-r--r-- 1 root root 0 Oct 28 11:42 enable
  850. -rw-r--r-- 1 root root 0 Oct 28 11:42 filter
  851. -r--r--r-- 1 root root 0 Oct 28 11:42 format
  852. -r--r--r-- 1 root root 0 Oct 28 11:42 id
  853. root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# cat format
  854. name: do_fork
  855. ID: 944
  856. format:
  857. field:unsigned short common_type; offset:0; size:2; signed:0;
  858. field:unsigned char common_flags; offset:2; size:1; signed:0;
  859. field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
  860. field:int common_pid; offset:4; size:4; signed:1;
  861. field:int common_padding; offset:8; size:4; signed:1;
  862. field:unsigned long __probe_ip; offset:12; size:4; signed:0;
  863. print fmt: "(%lx)", REC->__probe_ip
  864. We can list all dynamic tracepoints currently in
  865. existence::
  866. root@crownbay:~# perf probe -l
  867. probe:do_fork (on do_fork)
  868. probe:schedule (on schedule)
  869. Let's record system-wide (``sleep 30`` is a
  870. trick for recording system-wide but basically do nothing and then wake
  871. up after 30 seconds)::
  872. root@crownbay:~# perf record -g -a -e probe:do_fork sleep 30
  873. [ perf record: Woken up 1 times to write data ]
  874. [ perf record: Captured and wrote 0.087 MB perf.data (~3812 samples) ]
  875. Using ``perf script`` we can see each ``do_fork`` event that fired::
  876. root@crownbay:~# perf script
  877. # ========
  878. # captured on: Sun Oct 28 11:55:18 2012
  879. # hostname : crownbay
  880. # os release : 3.4.11-yocto-standard
  881. # perf version : 3.4.11
  882. # arch : i686
  883. # nrcpus online : 2
  884. # nrcpus avail : 2
  885. # cpudesc : Intel(R) Atom(TM) CPU E660 @ 1.30GHz
  886. # cpuid : GenuineIntel,6,38,1
  887. # total memory : 1017184 kB
  888. # cmdline : /usr/bin/perf record -g -a -e probe:do_fork sleep 30
  889. # event : name = probe:do_fork, type = 2, config = 0x3b0, config1 = 0x0, config2 = 0x0, excl_usr = 0, excl_kern
  890. = 0, id = { 5, 6 }
  891. # HEADER_CPU_TOPOLOGY info available, use -I to display
  892. # ========
  893. #
  894. matchbox-deskto 1197 [001] 34211.378318: do_fork: (c1028460)
  895. matchbox-deskto 1295 [001] 34211.380388: do_fork: (c1028460)
  896. pcmanfm 1296 [000] 34211.632350: do_fork: (c1028460)
  897. pcmanfm 1296 [000] 34211.639917: do_fork: (c1028460)
  898. matchbox-deskto 1197 [001] 34217.541603: do_fork: (c1028460)
  899. matchbox-deskto 1299 [001] 34217.543584: do_fork: (c1028460)
  900. gthumb 1300 [001] 34217.697451: do_fork: (c1028460)
  901. gthumb 1300 [001] 34219.085734: do_fork: (c1028460)
  902. gthumb 1300 [000] 34219.121351: do_fork: (c1028460)
  903. gthumb 1300 [001] 34219.264551: do_fork: (c1028460)
  904. pcmanfm 1296 [000] 34219.590380: do_fork: (c1028460)
  905. matchbox-deskto 1197 [001] 34224.955965: do_fork: (c1028460)
  906. matchbox-deskto 1306 [001] 34224.957972: do_fork: (c1028460)
  907. matchbox-termin 1307 [000] 34225.038214: do_fork: (c1028460)
  908. matchbox-termin 1307 [001] 34225.044218: do_fork: (c1028460)
  909. matchbox-termin 1307 [000] 34225.046442: do_fork: (c1028460)
  910. matchbox-deskto 1197 [001] 34237.112138: do_fork: (c1028460)
  911. matchbox-deskto 1311 [001] 34237.114106: do_fork: (c1028460)
  912. gaku 1312 [000] 34237.202388: do_fork: (c1028460)
  913. And using ``perf report`` on the same file, we can see the
  914. call graphs from starting a few programs during those 30 seconds:
  915. .. image:: figures/perf-probe-do_fork-profile.png
  916. :align: center
  917. .. admonition:: Tying it Together
  918. The trace events subsystem accommodate static and dynamic tracepoints
  919. in exactly the same way --- there's no difference as far as the
  920. infrastructure is concerned. See the ftrace section for more details
  921. on the trace event subsystem.
  922. .. admonition:: Tying it Together
  923. Dynamic tracepoints are implemented under the covers by Kprobes and
  924. Uprobes. Kprobes and Uprobes are also used by and in fact are the
  925. main focus of SystemTap.
  926. perf Documentation
  927. ------------------
  928. Online versions of the manual pages for the commands discussed in this
  929. section can be found here:
  930. - The `'perf stat' manual page <https://linux.die.net/man/1/perf-stat>`__.
  931. - The `'perf record'
  932. manual page <https://linux.die.net/man/1/perf-record>`__.
  933. - The `'perf report'
  934. manual page <https://linux.die.net/man/1/perf-report>`__.
  935. - The `'perf probe' manual page <https://linux.die.net/man/1/perf-probe>`__.
  936. - The `'perf script'
  937. manual page <https://linux.die.net/man/1/perf-script>`__.
  938. - Documentation on using the `'perf script' python
  939. binding <https://linux.die.net/man/1/perf-script-python>`__.
  940. - The top-level `perf(1) manual page <https://linux.die.net/man/1/perf>`__.
  941. Normally, you should be able to open the manual pages via perf itself
  942. e.g. ``perf help`` or ``perf help record``.
  943. To have the perf manual pages installed on your target, modify your
  944. configuration as follows::
  945. IMAGE_INSTALL:append = " perf perf-doc"
  946. DISTRO_FEATURES:append = " api-documentation"
  947. The manual pages in text form, along with some other files, such as a set
  948. of examples, can also be found in the ``perf`` directory of the kernel tree::
  949. tools/perf/Documentation
  950. There's also a nice perf tutorial on the perf
  951. wiki that goes into more detail than we do here in certain areas: `perf
  952. Tutorial <https://perf.wiki.kernel.org/index.php/Tutorial>`__
  953. ftrace
  954. ======
  955. "ftrace" literally refers to the "ftrace function tracer" but in reality
  956. this encompasses several related tracers along with the
  957. infrastructure that they all make use of.
  958. ftrace Setup
  959. ------------
  960. For this section, we'll assume you've already performed the basic setup
  961. outlined in the ":ref:`profile-manual/intro:General Setup`" section.
  962. ftrace, trace-cmd, and KernelShark run on the target system, and are
  963. ready to go out-of-the-box --- no additional setup is necessary. For the
  964. rest of this section we assume you're connected to the host through SSH and
  965. will be running ftrace on the target. KernelShark is a GUI application and if
  966. you use the ``-X`` option to ``ssh`` you can have the KernelShark GUI run on
  967. the target but display remotely on the host if you want.
  968. Basic ftrace usage
  969. ------------------
  970. "ftrace" essentially refers to everything included in the ``/tracing``
  971. directory of the mounted debugfs filesystem (Yocto follows the standard
  972. convention and mounts it at ``/sys/kernel/debug``). All the files found in
  973. ``/sys/kernel/debug/tracing`` on a Yocto system are::
  974. root@sugarbay:/sys/kernel/debug/tracing# ls
  975. README kprobe_events trace
  976. available_events kprobe_profile trace_clock
  977. available_filter_functions options trace_marker
  978. available_tracers per_cpu trace_options
  979. buffer_size_kb printk_formats trace_pipe
  980. buffer_total_size_kb saved_cmdlines tracing_cpumask
  981. current_tracer set_event tracing_enabled
  982. dyn_ftrace_total_info set_ftrace_filter tracing_on
  983. enabled_functions set_ftrace_notrace tracing_thresh
  984. events set_ftrace_pid
  985. free_buffer set_graph_function
  986. The files listed above are used for various purposes
  987. --- some relate directly to the tracers themselves, others are used to set
  988. tracing options, and yet others actually contain the tracing output when
  989. a tracer is in effect. Some of the functions can be guessed from their
  990. names, others need explanation; in any case, we'll cover some of the
  991. files we see here below but for an explanation of the others, please see
  992. the ftrace documentation.
  993. We'll start by looking at some of the available built-in tracers.
  994. The ``available_tracers`` file lists the set of available tracers::
  995. root@sugarbay:/sys/kernel/debug/tracing# cat available_tracers
  996. blk function_graph function nop
  997. The ``current_tracer`` file contains the tracer currently in effect::
  998. root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer
  999. nop
  1000. The above listing of ``current_tracer`` shows that the
  1001. ``nop`` tracer is in effect, which is just another way of saying that
  1002. there's actually no tracer currently in effect.
  1003. Writing one of the available tracers into ``current_tracer`` makes the
  1004. specified tracer the current tracer::
  1005. root@sugarbay:/sys/kernel/debug/tracing# echo function > current_tracer
  1006. root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer
  1007. function
  1008. The above sets the current tracer to be the ``function`` tracer. This tracer
  1009. traces every function call in the kernel and makes it available as the
  1010. contents of the ``trace`` file. Reading the ``trace`` file lists the
  1011. currently buffered function calls that have been traced by the function
  1012. tracer::
  1013. root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
  1014. # tracer: function
  1015. #
  1016. # entries-in-buffer/entries-written: 310629/766471 #P:8
  1017. #
  1018. # _-----=> irqs-off
  1019. # / _----=> need-resched
  1020. # | / _---=> hardirq/softirq
  1021. # || / _--=> preempt-depth
  1022. # ||| / delay
  1023. # TASK-PID CPU# |||| TIMESTAMP FUNCTION
  1024. # | | | |||| | |
  1025. <idle>-0 [004] d..1 470.867169: ktime_get_real <-intel_idle
  1026. <idle>-0 [004] d..1 470.867170: getnstimeofday <-ktime_get_real
  1027. <idle>-0 [004] d..1 470.867171: ns_to_timeval <-intel_idle
  1028. <idle>-0 [004] d..1 470.867171: ns_to_timespec <-ns_to_timeval
  1029. <idle>-0 [004] d..1 470.867172: smp_apic_timer_interrupt <-apic_timer_interrupt
  1030. <idle>-0 [004] d..1 470.867172: native_apic_mem_write <-smp_apic_timer_interrupt
  1031. <idle>-0 [004] d..1 470.867172: irq_enter <-smp_apic_timer_interrupt
  1032. <idle>-0 [004] d..1 470.867172: rcu_irq_enter <-irq_enter
  1033. <idle>-0 [004] d..1 470.867173: rcu_idle_exit_common.isra.33 <-rcu_irq_enter
  1034. <idle>-0 [004] d..1 470.867173: local_bh_disable <-irq_enter
  1035. <idle>-0 [004] d..1 470.867173: add_preempt_count <-local_bh_disable
  1036. <idle>-0 [004] d.s1 470.867174: tick_check_idle <-irq_enter
  1037. <idle>-0 [004] d.s1 470.867174: tick_check_oneshot_broadcast <-tick_check_idle
  1038. <idle>-0 [004] d.s1 470.867174: ktime_get <-tick_check_idle
  1039. <idle>-0 [004] d.s1 470.867174: tick_nohz_stop_idle <-tick_check_idle
  1040. <idle>-0 [004] d.s1 470.867175: update_ts_time_stats <-tick_nohz_stop_idle
  1041. <idle>-0 [004] d.s1 470.867175: nr_iowait_cpu <-update_ts_time_stats
  1042. <idle>-0 [004] d.s1 470.867175: tick_do_update_jiffies64 <-tick_check_idle
  1043. <idle>-0 [004] d.s1 470.867175: _raw_spin_lock <-tick_do_update_jiffies64
  1044. <idle>-0 [004] d.s1 470.867176: add_preempt_count <-_raw_spin_lock
  1045. <idle>-0 [004] d.s2 470.867176: do_timer <-tick_do_update_jiffies64
  1046. <idle>-0 [004] d.s2 470.867176: _raw_spin_lock <-do_timer
  1047. <idle>-0 [004] d.s2 470.867176: add_preempt_count <-_raw_spin_lock
  1048. <idle>-0 [004] d.s3 470.867177: ntp_tick_length <-do_timer
  1049. <idle>-0 [004] d.s3 470.867177: _raw_spin_lock_irqsave <-ntp_tick_length
  1050. .
  1051. .
  1052. .
  1053. Each line in the trace above shows what was happening in the kernel on a given
  1054. CPU, to the level of detail of function calls. Each entry shows the function
  1055. called, followed by its caller (after the arrow).
  1056. The function tracer gives you an extremely detailed idea of what the
  1057. kernel was doing at the point in time the trace was taken, and is a
  1058. great way to learn about how the kernel code works in a dynamic sense.
  1059. .. admonition:: Tying it Together
  1060. The ftrace function tracer is also available from within perf, as the
  1061. ``ftrace:function`` tracepoint.
  1062. It is a little more difficult to follow the call chains than it needs to
  1063. be --- luckily there's a variant of the function tracer that displays the
  1064. call chains explicitly, called the ``function_graph`` tracer::
  1065. root@sugarbay:/sys/kernel/debug/tracing# echo function_graph > current_tracer
  1066. root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
  1067. tracer: function_graph
  1068. CPU DURATION FUNCTION CALLS
  1069. | | | | | | |
  1070. 7) 0.046 us | pick_next_task_fair();
  1071. 7) 0.043 us | pick_next_task_stop();
  1072. 7) 0.042 us | pick_next_task_rt();
  1073. 7) 0.032 us | pick_next_task_fair();
  1074. 7) 0.030 us | pick_next_task_idle();
  1075. 7) | _raw_spin_unlock_irq() {
  1076. 7) 0.033 us | sub_preempt_count();
  1077. 7) 0.258 us | }
  1078. 7) 0.032 us | sub_preempt_count();
  1079. 7) + 13.341 us | } /* __schedule */
  1080. 7) 0.095 us | } /* sub_preempt_count */
  1081. 7) | schedule() {
  1082. 7) | __schedule() {
  1083. 7) 0.060 us | add_preempt_count();
  1084. 7) 0.044 us | rcu_note_context_switch();
  1085. 7) | _raw_spin_lock_irq() {
  1086. 7) 0.033 us | add_preempt_count();
  1087. 7) 0.247 us | }
  1088. 7) | idle_balance() {
  1089. 7) | _raw_spin_unlock() {
  1090. 7) 0.031 us | sub_preempt_count();
  1091. 7) 0.246 us | }
  1092. 7) | update_shares() {
  1093. 7) 0.030 us | __rcu_read_lock();
  1094. 7) 0.029 us | __rcu_read_unlock();
  1095. 7) 0.484 us | }
  1096. 7) 0.030 us | __rcu_read_lock();
  1097. 7) | load_balance() {
  1098. 7) | find_busiest_group() {
  1099. 7) 0.031 us | idle_cpu();
  1100. 7) 0.029 us | idle_cpu();
  1101. 7) 0.035 us | idle_cpu();
  1102. 7) 0.906 us | }
  1103. 7) 1.141 us | }
  1104. 7) 0.022 us | msecs_to_jiffies();
  1105. 7) | load_balance() {
  1106. 7) | find_busiest_group() {
  1107. 7) 0.031 us | idle_cpu();
  1108. .
  1109. .
  1110. .
  1111. 4) 0.062 us | msecs_to_jiffies();
  1112. 4) 0.062 us | __rcu_read_unlock();
  1113. 4) | _raw_spin_lock() {
  1114. 4) 0.073 us | add_preempt_count();
  1115. 4) 0.562 us | }
  1116. 4) + 17.452 us | }
  1117. 4) 0.108 us | put_prev_task_fair();
  1118. 4) 0.102 us | pick_next_task_fair();
  1119. 4) 0.084 us | pick_next_task_stop();
  1120. 4) 0.075 us | pick_next_task_rt();
  1121. 4) 0.062 us | pick_next_task_fair();
  1122. 4) 0.066 us | pick_next_task_idle();
  1123. ------------------------------------------
  1124. 4) kworker-74 => <idle>-0
  1125. ------------------------------------------
  1126. 4) | finish_task_switch() {
  1127. 4) | _raw_spin_unlock_irq() {
  1128. 4) 0.100 us | sub_preempt_count();
  1129. 4) 0.582 us | }
  1130. 4) 1.105 us | }
  1131. 4) 0.088 us | sub_preempt_count();
  1132. 4) ! 100.066 us | }
  1133. .
  1134. .
  1135. .
  1136. 3) | sys_ioctl() {
  1137. 3) 0.083 us | fget_light();
  1138. 3) | security_file_ioctl() {
  1139. 3) 0.066 us | cap_file_ioctl();
  1140. 3) 0.562 us | }
  1141. 3) | do_vfs_ioctl() {
  1142. 3) | drm_ioctl() {
  1143. 3) 0.075 us | drm_ut_debug_printk();
  1144. 3) | i915_gem_pwrite_ioctl() {
  1145. 3) | i915_mutex_lock_interruptible() {
  1146. 3) 0.070 us | mutex_lock_interruptible();
  1147. 3) 0.570 us | }
  1148. 3) | drm_gem_object_lookup() {
  1149. 3) | _raw_spin_lock() {
  1150. 3) 0.080 us | add_preempt_count();
  1151. 3) 0.620 us | }
  1152. 3) | _raw_spin_unlock() {
  1153. 3) 0.085 us | sub_preempt_count();
  1154. 3) 0.562 us | }
  1155. 3) 2.149 us | }
  1156. 3) 0.133 us | i915_gem_object_pin();
  1157. 3) | i915_gem_object_set_to_gtt_domain() {
  1158. 3) 0.065 us | i915_gem_object_flush_gpu_write_domain();
  1159. 3) 0.065 us | i915_gem_object_wait_rendering();
  1160. 3) 0.062 us | i915_gem_object_flush_cpu_write_domain();
  1161. 3) 1.612 us | }
  1162. 3) | i915_gem_object_put_fence() {
  1163. 3) 0.097 us | i915_gem_object_flush_fence.constprop.36();
  1164. 3) 0.645 us | }
  1165. 3) 0.070 us | add_preempt_count();
  1166. 3) 0.070 us | sub_preempt_count();
  1167. 3) 0.073 us | i915_gem_object_unpin();
  1168. 3) 0.068 us | mutex_unlock();
  1169. 3) 9.924 us | }
  1170. 3) + 11.236 us | }
  1171. 3) + 11.770 us | }
  1172. 3) + 13.784 us | }
  1173. 3) | sys_ioctl() {
  1174. As you can see, the ``function_graph`` display is much easier
  1175. to follow. Also note that in addition to the function calls and
  1176. associated braces, other events such as scheduler events are displayed
  1177. in context. In fact, you can freely include any tracepoint available in
  1178. the trace events subsystem described in the next section by just
  1179. enabling those events, and they'll appear in context in the function
  1180. graph display. Quite a powerful tool for understanding kernel dynamics.
  1181. Also notice that there are various annotations on the left hand side of
  1182. the display. For example if the total time it took for a given function
  1183. to execute is above a certain threshold, an exclamation point or plus
  1184. sign appears on the left hand side. Please see the ftrace documentation
  1185. for details on all these fields.
  1186. The 'trace events' Subsystem
  1187. ----------------------------
  1188. One especially important directory contained within the
  1189. ``/sys/kernel/debug/tracing`` directory is the ``events`` subdirectory, which
  1190. contains representations of every tracepoint in the system. Listing out
  1191. the contents of the ``events`` subdirectory, we see mainly another set of
  1192. subdirectories::
  1193. root@sugarbay:/sys/kernel/debug/tracing# cd events
  1194. root@sugarbay:/sys/kernel/debug/tracing/events# ls -al
  1195. drwxr-xr-x 38 root root 0 Nov 14 23:19 .
  1196. drwxr-xr-x 5 root root 0 Nov 14 23:19 ..
  1197. drwxr-xr-x 19 root root 0 Nov 14 23:19 block
  1198. drwxr-xr-x 32 root root 0 Nov 14 23:19 btrfs
  1199. drwxr-xr-x 5 root root 0 Nov 14 23:19 drm
  1200. -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
  1201. drwxr-xr-x 40 root root 0 Nov 14 23:19 ext3
  1202. drwxr-xr-x 79 root root 0 Nov 14 23:19 ext4
  1203. drwxr-xr-x 14 root root 0 Nov 14 23:19 ftrace
  1204. drwxr-xr-x 8 root root 0 Nov 14 23:19 hda
  1205. -r--r--r-- 1 root root 0 Nov 14 23:19 header_event
  1206. -r--r--r-- 1 root root 0 Nov 14 23:19 header_page
  1207. drwxr-xr-x 25 root root 0 Nov 14 23:19 i915
  1208. drwxr-xr-x 7 root root 0 Nov 14 23:19 irq
  1209. drwxr-xr-x 12 root root 0 Nov 14 23:19 jbd
  1210. drwxr-xr-x 14 root root 0 Nov 14 23:19 jbd2
  1211. drwxr-xr-x 14 root root 0 Nov 14 23:19 kmem
  1212. drwxr-xr-x 7 root root 0 Nov 14 23:19 module
  1213. drwxr-xr-x 3 root root 0 Nov 14 23:19 napi
  1214. drwxr-xr-x 6 root root 0 Nov 14 23:19 net
  1215. drwxr-xr-x 3 root root 0 Nov 14 23:19 oom
  1216. drwxr-xr-x 12 root root 0 Nov 14 23:19 power
  1217. drwxr-xr-x 3 root root 0 Nov 14 23:19 printk
  1218. drwxr-xr-x 8 root root 0 Nov 14 23:19 random
  1219. drwxr-xr-x 4 root root 0 Nov 14 23:19 raw_syscalls
  1220. drwxr-xr-x 3 root root 0 Nov 14 23:19 rcu
  1221. drwxr-xr-x 6 root root 0 Nov 14 23:19 rpm
  1222. drwxr-xr-x 20 root root 0 Nov 14 23:19 sched
  1223. drwxr-xr-x 7 root root 0 Nov 14 23:19 scsi
  1224. drwxr-xr-x 4 root root 0 Nov 14 23:19 signal
  1225. drwxr-xr-x 5 root root 0 Nov 14 23:19 skb
  1226. drwxr-xr-x 4 root root 0 Nov 14 23:19 sock
  1227. drwxr-xr-x 10 root root 0 Nov 14 23:19 sunrpc
  1228. drwxr-xr-x 538 root root 0 Nov 14 23:19 syscalls
  1229. drwxr-xr-x 4 root root 0 Nov 14 23:19 task
  1230. drwxr-xr-x 14 root root 0 Nov 14 23:19 timer
  1231. drwxr-xr-x 3 root root 0 Nov 14 23:19 udp
  1232. drwxr-xr-x 21 root root 0 Nov 14 23:19 vmscan
  1233. drwxr-xr-x 3 root root 0 Nov 14 23:19 vsyscall
  1234. drwxr-xr-x 6 root root 0 Nov 14 23:19 workqueue
  1235. drwxr-xr-x 26 root root 0 Nov 14 23:19 writeback
  1236. Each one of these subdirectories
  1237. corresponds to a "subsystem" and contains yet again more subdirectories,
  1238. each one of those finally corresponding to a tracepoint. For example,
  1239. here are the contents of the ``kmem`` subsystem::
  1240. root@sugarbay:/sys/kernel/debug/tracing/events# cd kmem
  1241. root@sugarbay:/sys/kernel/debug/tracing/events/kmem# ls -al
  1242. drwxr-xr-x 14 root root 0 Nov 14 23:19 .
  1243. drwxr-xr-x 38 root root 0 Nov 14 23:19 ..
  1244. -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
  1245. -rw-r--r-- 1 root root 0 Nov 14 23:19 filter
  1246. drwxr-xr-x 2 root root 0 Nov 14 23:19 kfree
  1247. drwxr-xr-x 2 root root 0 Nov 14 23:19 kmalloc
  1248. drwxr-xr-x 2 root root 0 Nov 14 23:19 kmalloc_node
  1249. drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_alloc
  1250. drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_alloc_node
  1251. drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_free
  1252. drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc
  1253. drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc_extfrag
  1254. drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc_zone_locked
  1255. drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_free
  1256. drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_free_batched
  1257. drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_pcpu_drain
  1258. Let's see what's inside the subdirectory for a
  1259. specific tracepoint, in this case the one for ``kmalloc``::
  1260. root@sugarbay:/sys/kernel/debug/tracing/events/kmem# cd kmalloc
  1261. root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# ls -al
  1262. drwxr-xr-x 2 root root 0 Nov 14 23:19 .
  1263. drwxr-xr-x 14 root root 0 Nov 14 23:19 ..
  1264. -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
  1265. -rw-r--r-- 1 root root 0 Nov 14 23:19 filter
  1266. -r--r--r-- 1 root root 0 Nov 14 23:19 format
  1267. -r--r--r-- 1 root root 0 Nov 14 23:19 id
  1268. The ``format`` file for the
  1269. tracepoint describes the event in memory, which is used by the various
  1270. tracing tools that now make use of these tracepoint to parse the event
  1271. and make sense of it, along with a ``print fmt`` field that allows tools
  1272. like ftrace to display the event as text. The format of the
  1273. ``kmalloc`` event looks like::
  1274. root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# cat format
  1275. name: kmalloc
  1276. ID: 313
  1277. format:
  1278. field:unsigned short common_type; offset:0; size:2; signed:0;
  1279. field:unsigned char common_flags; offset:2; size:1; signed:0;
  1280. field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
  1281. field:int common_pid; offset:4; size:4; signed:1;
  1282. field:int common_padding; offset:8; size:4; signed:1;
  1283. field:unsigned long call_site; offset:16; size:8; signed:0;
  1284. field:const void * ptr; offset:24; size:8; signed:0;
  1285. field:size_t bytes_req; offset:32; size:8; signed:0;
  1286. field:size_t bytes_alloc; offset:40; size:8; signed:0;
  1287. field:gfp_t gfp_flags; offset:48; size:4; signed:0;
  1288. print fmt: "call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s", REC->call_site, REC->ptr, REC->bytes_req, REC->bytes_alloc,
  1289. (REC->gfp_flags) ? __print_flags(REC->gfp_flags, "|", {(unsigned long)(((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
  1290. gfp_t)0x20000u) | (( gfp_t)0x02u) | (( gfp_t)0x08u)) | (( gfp_t)0x4000u) | (( gfp_t)0x10000u) | (( gfp_t)0x1000u) | (( gfp_t)0x200u) | ((
  1291. gfp_t)0x400000u)), "GFP_TRANSHUGE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x20000u) | ((
  1292. gfp_t)0x02u) | (( gfp_t)0x08u)), "GFP_HIGHUSER_MOVABLE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
  1293. gfp_t)0x20000u) | (( gfp_t)0x02u)), "GFP_HIGHUSER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
  1294. gfp_t)0x20000u)), "GFP_USER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x80000u)), GFP_TEMPORARY"},
  1295. {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u)), "GFP_KERNEL"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u)),
  1296. "GFP_NOFS"}, {(unsigned long)((( gfp_t)0x20u)), "GFP_ATOMIC"}, {(unsigned long)((( gfp_t)0x10u)), "GFP_NOIO"}, {(unsigned long)((
  1297. gfp_t)0x20u), "GFP_HIGH"}, {(unsigned long)(( gfp_t)0x10u), "GFP_WAIT"}, {(unsigned long)(( gfp_t)0x40u), "GFP_IO"}, {(unsigned long)((
  1298. gfp_t)0x100u), "GFP_COLD"}, {(unsigned long)(( gfp_t)0x200u), "GFP_NOWARN"}, {(unsigned long)(( gfp_t)0x400u), "GFP_REPEAT"}, {(unsigned
  1299. long)(( gfp_t)0x800u), "GFP_NOFAIL"}, {(unsigned long)(( gfp_t)0x1000u), "GFP_NORETRY"}, {(unsigned long)(( gfp_t)0x4000u), "GFP_COMP"},
  1300. {(unsigned long)(( gfp_t)0x8000u), "GFP_ZERO"}, {(unsigned long)(( gfp_t)0x10000u), "GFP_NOMEMALLOC"}, {(unsigned long)(( gfp_t)0x20000u),
  1301. "GFP_HARDWALL"}, {(unsigned long)(( gfp_t)0x40000u), "GFP_THISNODE"}, {(unsigned long)(( gfp_t)0x80000u), "GFP_RECLAIMABLE"}, {(unsigned
  1302. long)(( gfp_t)0x08u), "GFP_MOVABLE"}, {(unsigned long)(( gfp_t)0), "GFP_NOTRACK"}, {(unsigned long)(( gfp_t)0x400000u), "GFP_NO_KSWAPD"},
  1303. {(unsigned long)(( gfp_t)0x800000u), "GFP_OTHER_NODE"} ) : "GFP_NOWAIT"
  1304. The ``enable`` file
  1305. in the tracepoint directory is what allows the user (or tools such as
  1306. ``trace-cmd``) to actually turn the tracepoint on and off. When enabled, the
  1307. corresponding tracepoint will start appearing in the ftrace ``trace`` file
  1308. described previously. For example, this turns on the ``kmalloc`` tracepoint::
  1309. root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 1 > enable
  1310. At the moment, we're not interested in the function tracer or
  1311. some other tracer that might be in effect, so we first turn it off, but
  1312. if we do that, we still need to turn tracing on in order to see the
  1313. events in the output buffer::
  1314. root@sugarbay:/sys/kernel/debug/tracing# echo nop > current_tracer
  1315. root@sugarbay:/sys/kernel/debug/tracing# echo 1 > tracing_on
  1316. Now, if we look at the ``trace`` file, we see nothing
  1317. but the ``kmalloc`` events we just turned on::
  1318. root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
  1319. # tracer: nop
  1320. #
  1321. # entries-in-buffer/entries-written: 1897/1897 #P:8
  1322. #
  1323. # _-----=> irqs-off
  1324. # / _----=> need-resched
  1325. # | / _---=> hardirq/softirq
  1326. # || / _--=> preempt-depth
  1327. # ||| / delay
  1328. # TASK-PID CPU# |||| TIMESTAMP FUNCTION
  1329. # | | | |||| | |
  1330. dropbear-1465 [000] ...1 18154.620753: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
  1331. <idle>-0 [000] ..s3 18154.621640: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
  1332. <idle>-0 [000] ..s3 18154.621656: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
  1333. matchbox-termin-1361 [001] ...1 18154.755472: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f0e00 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT
  1334. Xorg-1264 [002] ...1 18154.755581: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
  1335. Xorg-1264 [002] ...1 18154.755583: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
  1336. Xorg-1264 [002] ...1 18154.755589: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
  1337. matchbox-termin-1361 [001] ...1 18155.354594: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db35400 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT
  1338. Xorg-1264 [002] ...1 18155.354703: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
  1339. Xorg-1264 [002] ...1 18155.354705: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
  1340. Xorg-1264 [002] ...1 18155.354711: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
  1341. <idle>-0 [000] ..s3 18155.673319: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
  1342. dropbear-1465 [000] ...1 18155.673525: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
  1343. <idle>-0 [000] ..s3 18155.674821: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
  1344. <idle>-0 [000] ..s3 18155.793014: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
  1345. dropbear-1465 [000] ...1 18155.793219: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
  1346. <idle>-0 [000] ..s3 18155.794147: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
  1347. <idle>-0 [000] ..s3 18155.936705: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
  1348. dropbear-1465 [000] ...1 18155.936910: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
  1349. <idle>-0 [000] ..s3 18155.937869: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
  1350. matchbox-termin-1361 [001] ...1 18155.953667: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f2000 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT
  1351. Xorg-1264 [002] ...1 18155.953775: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
  1352. Xorg-1264 [002] ...1 18155.953777: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
  1353. Xorg-1264 [002] ...1 18155.953783: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
  1354. <idle>-0 [000] ..s3 18156.176053: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
  1355. dropbear-1465 [000] ...1 18156.176257: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
  1356. <idle>-0 [000] ..s3 18156.177717: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
  1357. <idle>-0 [000] ..s3 18156.399229: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
  1358. dropbear-1465 [000] ...1 18156.399434: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_http://rostedt.homelinux.com/kernelshark/req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
  1359. <idle>-0 [000] ..s3 18156.400660: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
  1360. matchbox-termin-1361 [001] ...1 18156.552800: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db34800 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT
  1361. To again disable the ``kmalloc`` event, we need to send ``0`` to the ``enable`` file::
  1362. root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 0 > enable
  1363. You can enable any number of events or complete subsystems (by
  1364. using the ``enable`` file in the subsystem directory) and get an
  1365. arbitrarily fine-grained idea of what's going on in the system by
  1366. enabling as many of the appropriate tracepoints as applicable.
  1367. Several tools described in this How-to do just that, including
  1368. ``trace-cmd`` and KernelShark in the next section.
  1369. .. admonition:: Tying it Together
  1370. These tracepoints and their representation are used not only by
  1371. ftrace, but by many of the other tools covered in this document and
  1372. they form a central point of integration for the various tracers
  1373. available in Linux. They form a central part of the instrumentation
  1374. for the following tools: perf, LTTng, ftrace, blktrace and SystemTap
  1375. .. admonition:: Tying it Together
  1376. Eventually all the special-purpose tracers currently available in
  1377. ``/sys/kernel/debug/tracing`` will be removed and replaced with
  1378. equivalent tracers based on the "trace events" subsystem.
  1379. trace-cmd / KernelShark
  1380. -----------------------
  1381. trace-cmd is essentially an extensive command-line "wrapper" interface
  1382. that hides the details of all the individual files in
  1383. ``/sys/kernel/debug/tracing``, allowing users to specify specific particular
  1384. events within the ``/sys/kernel/debug/tracing/events/`` subdirectory and to
  1385. collect traces and avoid having to deal with those details directly.
  1386. As yet another layer on top of that, KernelShark provides a GUI that
  1387. allows users to start and stop traces and specify sets of events using
  1388. an intuitive interface, and view the output as both trace events and as
  1389. a per-CPU graphical display. It directly uses trace-cmd as the
  1390. plumbing that accomplishes all that underneath the covers (and actually
  1391. displays the trace-cmd command it uses, as we'll see).
  1392. To start a trace using KernelShark, first start this tool::
  1393. root@sugarbay:~# kernelshark
  1394. Then open up the ``Capture`` dialog by choosing from the KernelShark menu::
  1395. Capture | Record
  1396. That will display the following dialog, which allows you to choose one or more
  1397. events (or even entire subsystems) to trace:
  1398. .. image:: figures/kernelshark-choose-events.png
  1399. :align: center
  1400. Note that these are exactly the same sets of events described in the
  1401. previous trace events subsystem section, and in fact is where trace-cmd
  1402. gets them for KernelShark.
  1403. In the above screenshot, we've decided to explore the graphics subsystem
  1404. a bit and so have chosen to trace all the tracepoints contained within
  1405. the ``i915`` and ``drm`` subsystems.
  1406. After doing that, we can start and stop the trace using the ``Run`` and
  1407. ``Stop`` button on the lower right corner of the dialog (the same button
  1408. will turn into the 'Stop' button after the trace has started):
  1409. .. image:: figures/kernelshark-output-display.png
  1410. :align: center
  1411. Notice that the right pane shows the exact trace-cmd command-line
  1412. that's used to run the trace, along with the results of the trace-cmd
  1413. run.
  1414. Once the ``Stop`` button is pressed, the graphical view magically fills up
  1415. with a colorful per-CPU display of the trace data, along with the
  1416. detailed event listing below that:
  1417. .. image:: figures/kernelshark-i915-display.png
  1418. :align: center
  1419. Here's another example, this time a display resulting from tracing ``all
  1420. events``:
  1421. .. image:: figures/kernelshark-all.png
  1422. :align: center
  1423. The tool is pretty self-explanatory, but for more detailed information
  1424. on navigating through the data, see the `KernelShark
  1425. website <https://kernelshark.org/Documentation.html>`__.
  1426. ftrace Documentation
  1427. --------------------
  1428. The documentation for ftrace can be found in the kernel Documentation
  1429. directory::
  1430. Documentation/trace/ftrace.txt
  1431. The documentation for the trace event subsystem can also be found in the kernel
  1432. Documentation directory::
  1433. Documentation/trace/events.txt
  1434. A nice series of articles on using ftrace and trace-cmd are available at LWN:
  1435. - `Debugging the kernel using ftrace - part
  1436. 1 <https://lwn.net/Articles/365835/>`__
  1437. - `Debugging the kernel using ftrace - part
  1438. 2 <https://lwn.net/Articles/366796/>`__
  1439. - `Secrets of the ftrace function
  1440. tracer <https://lwn.net/Articles/370423/>`__
  1441. - `trace-cmd: A front-end for
  1442. ftrace <https://lwn.net/Articles/410200/>`__
  1443. See also `KernelShark's documentation <https://kernelshark.org/Documentation.html>`__
  1444. for further usage details.
  1445. An amusing yet useful README (a tracing mini-How-to) can be found in
  1446. ``/sys/kernel/debug/tracing/README``.
  1447. SystemTap
  1448. =========
  1449. SystemTap is a system-wide script-based tracing and profiling tool.
  1450. SystemTap scripts are C-like programs that are executed in the kernel to
  1451. gather / print / aggregate data extracted from the context they end up being
  1452. called under.
  1453. For example, this probe from the `SystemTap
  1454. tutorial <https://sourceware.org/systemtap/tutorial/>`__ just prints a
  1455. line every time any process on the system runs ``open()`` on a file. For each line,
  1456. it prints the executable name of the program that opened the file, along
  1457. with its PID, and the name of the file it opened (or tried to open), which it
  1458. extracts from the argument string (``argstr``) of the ``open`` system call.
  1459. .. code-block:: none
  1460. probe syscall.open
  1461. {
  1462. printf ("%s(%d) open (%s)\n", execname(), pid(), argstr)
  1463. }
  1464. probe timer.ms(4000) # after 4 seconds
  1465. {
  1466. exit ()
  1467. }
  1468. Normally, to execute this
  1469. probe, you'd just install SystemTap on the system you want to probe,
  1470. and directly run the probe on that system e.g. assuming the name of the
  1471. file containing the above text is ``trace_open.stp``::
  1472. # stap trace_open.stp
  1473. What SystemTap does under the covers to run this probe is 1) parse and
  1474. convert the probe to an equivalent "C" form, 2) compile the "C" form
  1475. into a kernel module, 3) insert the module into the kernel, which arms
  1476. it, and 4) collect the data generated by the probe and display it to the
  1477. user.
  1478. In order to accomplish steps 1 and 2, the ``stap`` program needs access to
  1479. the kernel build system that produced the kernel that the probed system
  1480. is running. In the case of a typical embedded system (the "target"), the
  1481. kernel build system unfortunately isn't typically part of the image
  1482. running on the target. It is normally available on the "host" system
  1483. that produced the target image however; in such cases, steps 1 and 2 are
  1484. executed on the host system, and steps 3 and 4 are executed on the
  1485. target system, using only the SystemTap "runtime".
  1486. The SystemTap support in Yocto assumes that only steps 3 and 4 are run
  1487. on the target; it is possible to do everything on the target, but this
  1488. section assumes only the typical embedded use-case.
  1489. Therefore, what you need to do in order to run a SystemTap script on
  1490. the target is to 1) on the host system, compile the probe into a kernel
  1491. module that makes sense to the target, 2) copy the module onto the
  1492. target system and 3) insert the module into the target kernel, which
  1493. arms it, and 4) collect the data generated by the probe and display it
  1494. to the user.
  1495. SystemTap Setup
  1496. ---------------
  1497. Those are many steps and details, but fortunately Yocto
  1498. includes a script called ``crosstap`` that will take care of those
  1499. details, allowing you to just execute a SystemTap script on the remote
  1500. target, with arguments if necessary.
  1501. In order to do this from a remote host, however, you need to have access
  1502. to the build for the image you booted. The ``crosstap`` script provides
  1503. details on how to do this if you run the script on the host without
  1504. having done a build::
  1505. $ crosstap root@192.168.1.88 trace_open.stp
  1506. Error: No target kernel build found.
  1507. Did you forget to create a local build of your image?
  1508. 'crosstap' requires a local SDK build of the target system
  1509. (or a build that includes 'tools-profile') in order to build
  1510. kernel modules that can probe the target system.
  1511. Practically speaking, that means you need to do the following:
  1512. - If you're running a pre-built image, download the release
  1513. and/or BSP tarballs used to build the image.
  1514. - If you're working from git sources, just clone the metadata
  1515. and BSP layers needed to build the image you'll be booting.
  1516. - Make sure you're properly set up to build a new image (see
  1517. the BSP README and/or the widely available basic documentation
  1518. that discusses how to build images).
  1519. - Build an ``-sdk`` version of the image e.g.::
  1520. $ bitbake core-image-sato-sdk
  1521. - Or build a non-SDK image but include the profiling tools
  1522. (edit ``local.conf`` and add ``tools-profile`` to the end of
  1523. :term:`EXTRA_IMAGE_FEATURES` variable)::
  1524. $ bitbake core-image-sato
  1525. Once you've build the image on the host system, you're ready to
  1526. boot it (or the equivalent pre-built image) and use ``crosstap``
  1527. to probe it (you need to source the environment as usual first)::
  1528. $ source oe-init-build-env
  1529. $ cd ~/my/systemtap/scripts
  1530. $ crosstap root@192.168.1.xxx myscript.stp
  1531. .. note::
  1532. SystemTap, which uses ``crosstap``, assumes you can establish an SSH
  1533. connection to the remote target. Please refer to the crosstap wiki
  1534. page for details on verifying SSH connections. Also, the ability to SSH
  1535. into the target system is not enabled by default in ``*-minimal`` images.
  1536. Therefore, what you need to do is build an SDK image or image with
  1537. ``tools-profile`` as detailed in the ":ref:`profile-manual/intro:General Setup`"
  1538. section of this manual, and boot the resulting target image.
  1539. .. note::
  1540. If you have a :term:`Build Directory` containing multiple machines, you need
  1541. to have the :term:`MACHINE` you're connecting to selected in ``local.conf``, and
  1542. the kernel in that machine's :term:`Build Directory` must match the kernel on
  1543. the booted system exactly, or you'll get the above ``crosstap`` message
  1544. when you try to call a script.
  1545. Running a Script on a Target
  1546. ----------------------------
  1547. Once you've done that, you should be able to run a SystemTap script on
  1548. the target::
  1549. $ cd /path/to/yocto
  1550. $ source oe-init-build-env
  1551. ### Shell environment set up for builds. ###
  1552. You can now run 'bitbake <target>'
  1553. Common targets are:
  1554. core-image-minimal
  1555. core-image-sato
  1556. meta-toolchain
  1557. meta-ide-support
  1558. You can also run generated QEMU images with a command like 'runqemu qemux86-64'
  1559. Once you've done that, you can ``cd`` to whatever
  1560. directory contains your scripts and use ``crosstap`` to run the script::
  1561. $ cd /path/to/my/systemap/script
  1562. $ crosstap root@192.168.7.2 trace_open.stp
  1563. If you get an error connecting to the target e.g.::
  1564. $ crosstap root@192.168.7.2 trace_open.stp
  1565. error establishing ssh connection on remote 'root@192.168.7.2'
  1566. Try connecting to the target through SSH and see what happens::
  1567. $ ssh root@192.168.7.2
  1568. Connection problems are often due specifying a wrong IP address or having a ``host key
  1569. verification error``.
  1570. If everything worked as planned, you should see something like this
  1571. (enter the password when prompted, or press enter if it's set up to use
  1572. no password):
  1573. .. code-block:: none
  1574. $ crosstap root@192.168.7.2 trace_open.stp
  1575. root@192.168.7.2's password:
  1576. matchbox-termin(1036) open ("/tmp/vte3FS2LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
  1577. matchbox-termin(1036) open ("/tmp/vteJMC7LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
  1578. SystemTap Documentation
  1579. -----------------------
  1580. The SystemTap language reference can be found here: `SystemTap Language
  1581. Reference <https://sourceware.org/systemtap/langref/>`__
  1582. Links to other SystemTap documents, tutorials, and examples can be found
  1583. here: `SystemTap documentation
  1584. page <https://sourceware.org/systemtap/documentation.html>`__
  1585. Sysprof
  1586. =======
  1587. Sysprof is an easy to use system-wide profiler that consists of a
  1588. single window with three panes and a few buttons which allow you to
  1589. start, stop, and view the profile from one place.
  1590. Sysprof Setup
  1591. -------------
  1592. For this section, we'll assume you've already performed the basic setup
  1593. outlined in the ":ref:`profile-manual/intro:General Setup`" section.
  1594. Sysprof is a GUI-based application that runs on the target system. For the rest
  1595. of this document we assume you're connected to the host through SSH and will be
  1596. running Sysprof on the target (you can use the ``-X`` option to ``ssh`` and
  1597. have the Sysprof GUI run on the target but display remotely on the host
  1598. if you want).
  1599. Basic Sysprof Usage
  1600. -------------------
  1601. To start profiling the system, you just press the ``Start`` button. To
  1602. stop profiling and to start viewing the profile data in one easy step,
  1603. press the ``Profile`` button.
  1604. Once you've pressed the profile button, the three panes will fill up
  1605. with profiling data:
  1606. .. image:: figures/sysprof-copy-to-user.png
  1607. :align: center
  1608. The left pane shows a list of functions and processes. Selecting one of
  1609. those expands that function in the right pane, showing all its callees.
  1610. Note that this caller-oriented display is essentially the inverse of
  1611. perf's default callee-oriented call chain display.
  1612. In the screenshot above, we're focusing on ``__copy_to_user_ll()`` and
  1613. looking up the call chain we can see that one of the callers of
  1614. ``__copy_to_user_ll`` is ``sys_read()`` and the complete call path between them.
  1615. Notice that this is essentially a portion of the same information we saw
  1616. in the perf display shown in the perf section of this page.
  1617. .. image:: figures/sysprof-copy-from-user.png
  1618. :align: center
  1619. Similarly, the above is a snapshot of the Sysprof display of a
  1620. ``copy-from-user`` call chain.
  1621. Finally, looking at the third Sysprof pane in the lower left, we can see
  1622. a list of all the callers of a particular function selected in the top
  1623. left pane. In this case, the lower pane is showing all the callers of
  1624. ``__mark_inode_dirty``:
  1625. .. image:: figures/sysprof-callers.png
  1626. :align: center
  1627. Double-clicking on one of those functions will in turn change the focus
  1628. to the selected function, and so on.
  1629. .. admonition:: Tying it Together
  1630. If you like Sysprof's ``caller-oriented`` display, you may be able to
  1631. approximate it in other tools as well. For example, ``perf report`` has
  1632. the ``-g`` (``--call-graph``) option that you can experiment with; one of the
  1633. options is ``caller`` for an inverted caller-based call graph display.
  1634. Sysprof Documentation
  1635. ---------------------
  1636. There doesn't seem to be any documentation for Sysprof, but maybe that's
  1637. because it's pretty self-explanatory. The Sysprof website, however, is here:
  1638. `Sysprof, System-wide Performance Profiler for Linux <http://sysprof.com/>`__
  1639. LTTng (Linux Trace Toolkit, next generation)
  1640. ============================================
  1641. LTTng Setup
  1642. -----------
  1643. For this section, we'll assume you've already performed the basic setup
  1644. outlined in the ":ref:`profile-manual/intro:General Setup`" section.
  1645. LTTng is run on the target system by connecting to it through SSH.
  1646. Collecting and Viewing Traces
  1647. -----------------------------
  1648. Once you've applied the above commits and built and booted your image
  1649. (you need to build the ``core-image-sato-sdk`` image or use one of the other
  1650. methods described in the ":ref:`profile-manual/intro:General Setup`" section), you're ready to start
  1651. tracing.
  1652. Collecting and viewing a trace on the target (inside a shell)
  1653. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1654. First, from the host, connect to the target through SSH::
  1655. $ ssh -l root 192.168.1.47
  1656. The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
  1657. RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.
  1658. Are you sure you want to continue connecting (yes/no)? yes
  1659. Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
  1660. root@192.168.1.47's password:
  1661. Once on the target, use these steps to create a trace::
  1662. root@crownbay:~# lttng create
  1663. Spawning a session daemon
  1664. Session auto-20121015-232120 created.
  1665. Traces will be written in /home/root/lttng-traces/auto-20121015-232120
  1666. Enable the events you want to trace (in this case all kernel events)::
  1667. root@crownbay:~# lttng enable-event --kernel --all
  1668. All kernel events are enabled in channel channel0
  1669. Start the trace::
  1670. root@crownbay:~# lttng start
  1671. Tracing started for session auto-20121015-232120
  1672. And then stop the trace after awhile or after running a particular workload that
  1673. you want to trace::
  1674. root@crownbay:~# lttng stop
  1675. Tracing stopped for session auto-20121015-232120
  1676. You can now view the trace in text form on the target::
  1677. root@crownbay:~# lttng view
  1678. [23:21:56.989270399] (+?.?????????) sys_geteuid: { 1 }, { }
  1679. [23:21:56.989278081] (+0.000007682) exit_syscall: { 1 }, { ret = 0 }
  1680. [23:21:56.989286043] (+0.000007962) sys_pipe: { 1 }, { fildes = 0xB77B9E8C }
  1681. [23:21:56.989321802] (+0.000035759) exit_syscall: { 1 }, { ret = 0 }
  1682. [23:21:56.989329345] (+0.000007543) sys_mmap_pgoff: { 1 }, { addr = 0x0, len = 10485760, prot = 3, flags = 131362, fd = 4294967295, pgoff = 0 }
  1683. [23:21:56.989351694] (+0.000022349) exit_syscall: { 1 }, { ret = -1247805440 }
  1684. [23:21:56.989432989] (+0.000081295) sys_clone: { 1 }, { clone_flags = 0x411, newsp = 0xB5EFFFE4, parent_tid = 0xFFFFFFFF, child_tid = 0x0 }
  1685. [23:21:56.989477129] (+0.000044140) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 681660, vruntime = 43367983388 }
  1686. [23:21:56.989486697] (+0.000009568) sched_migrate_task: { 1 }, { comm = "lttng-consumerd", tid = 1193, prio = 20, orig_cpu = 1, dest_cpu = 1 }
  1687. [23:21:56.989508418] (+0.000021721) hrtimer_init: { 1 }, { hrtimer = 3970832076, clockid = 1, mode = 1 }
  1688. [23:21:56.989770462] (+0.000262044) hrtimer_cancel: { 1 }, { hrtimer = 3993865440 }
  1689. [23:21:56.989771580] (+0.000001118) hrtimer_cancel: { 0 }, { hrtimer = 3993812192 }
  1690. [23:21:56.989776957] (+0.000005377) hrtimer_expire_entry: { 1 }, { hrtimer = 3993865440, now = 79815980007057, function = 3238465232 }
  1691. [23:21:56.989778145] (+0.000001188) hrtimer_expire_entry: { 0 }, { hrtimer = 3993812192, now = 79815980008174, function = 3238465232 }
  1692. [23:21:56.989791695] (+0.000013550) softirq_raise: { 1 }, { vec = 1 }
  1693. [23:21:56.989795396] (+0.000003701) softirq_raise: { 0 }, { vec = 1 }
  1694. [23:21:56.989800635] (+0.000005239) softirq_raise: { 0 }, { vec = 9 }
  1695. [23:21:56.989807130] (+0.000006495) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 330710, vruntime = 43368314098 }
  1696. [23:21:56.989809993] (+0.000002863) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 1015313, vruntime = 36976733240 }
  1697. [23:21:56.989818514] (+0.000008521) hrtimer_expire_exit: { 0 }, { hrtimer = 3993812192 }
  1698. [23:21:56.989819631] (+0.000001117) hrtimer_expire_exit: { 1 }, { hrtimer = 3993865440 }
  1699. [23:21:56.989821866] (+0.000002235) hrtimer_start: { 0 }, { hrtimer = 3993812192, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 }
  1700. [23:21:56.989822984] (+0.000001118) hrtimer_start: { 1 }, { hrtimer = 3993865440, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 }
  1701. [23:21:56.989832762] (+0.000009778) softirq_entry: { 1 }, { vec = 1 }
  1702. [23:21:56.989833879] (+0.000001117) softirq_entry: { 0 }, { vec = 1 }
  1703. [23:21:56.989838069] (+0.000004190) timer_cancel: { 1 }, { timer = 3993871956 }
  1704. [23:21:56.989839187] (+0.000001118) timer_cancel: { 0 }, { timer = 3993818708 }
  1705. [23:21:56.989841492] (+0.000002305) timer_expire_entry: { 1 }, { timer = 3993871956, now = 79515980, function = 3238277552 }
  1706. [23:21:56.989842819] (+0.000001327) timer_expire_entry: { 0 }, { timer = 3993818708, now = 79515980, function = 3238277552 }
  1707. [23:21:56.989854831] (+0.000012012) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 49237, vruntime = 43368363335 }
  1708. [23:21:56.989855949] (+0.000001118) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 45121, vruntime = 36976778361 }
  1709. [23:21:56.989861257] (+0.000005308) sched_stat_sleep: { 1 }, { comm = "kworker/1:1", tid = 21, delay = 9451318 }
  1710. [23:21:56.989862374] (+0.000001117) sched_stat_sleep: { 0 }, { comm = "kworker/0:0", tid = 4, delay = 9958820 }
  1711. [23:21:56.989868241] (+0.000005867) sched_wakeup: { 0 }, { comm = "kworker/0:0", tid = 4, prio = 120, success = 1, target_cpu = 0 }
  1712. [23:21:56.989869358] (+0.000001117) sched_wakeup: { 1 }, { comm = "kworker/1:1", tid = 21, prio = 120, success = 1, target_cpu = 1 }
  1713. [23:21:56.989877460] (+0.000008102) timer_expire_exit: { 1 }, { timer = 3993871956 }
  1714. [23:21:56.989878577] (+0.000001117) timer_expire_exit: { 0 }, { timer = 3993818708 }
  1715. .
  1716. .
  1717. .
  1718. You can now safely destroy the trace
  1719. session (note that this doesn't delete the trace --- it's still there in
  1720. ``~/lttng-traces``)::
  1721. root@crownbay:~# lttng destroy
  1722. Session auto-20121015-232120 destroyed at /home/root
  1723. Note that the trace is saved in a directory of the same name as returned by
  1724. ``lttng create``, under the ``~/lttng-traces`` directory (note that you can change this by
  1725. supplying your own name to ``lttng create``)::
  1726. root@crownbay:~# ls -al ~/lttng-traces
  1727. drwxrwx--- 3 root root 1024 Oct 15 23:21 .
  1728. drwxr-xr-x 5 root root 1024 Oct 15 23:57 ..
  1729. drwxrwx--- 3 root root 1024 Oct 15 23:21 auto-20121015-232120
  1730. Collecting and viewing a user space trace on the target (inside a shell)
  1731. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1732. For LTTng user space tracing, you need to have a properly instrumented
  1733. user space program. For this example, we'll use the ``hello`` test program
  1734. generated by the ``lttng-ust`` build.
  1735. The ``hello`` test program isn't installed on the root filesystem by the ``lttng-ust``
  1736. build, so we need to copy it over manually. First ``cd`` into the build
  1737. directory that contains the ``hello`` executable::
  1738. $ cd build/tmp/work/core2_32-poky-linux/lttng-ust/2.0.5-r0/git/tests/hello/.libs
  1739. Copy that over to the target machine::
  1740. $ scp hello root@192.168.1.20:
  1741. You now have the instrumented LTTng "hello world" test program on the
  1742. target, ready to test.
  1743. First, from the host, connect to the target through SSH::
  1744. $ ssh -l root 192.168.1.47
  1745. The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
  1746. RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.
  1747. Are you sure you want to continue connecting (yes/no)? yes
  1748. Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
  1749. root@192.168.1.47's password:
  1750. Once on the target, use these steps to create a trace::
  1751. root@crownbay:~# lttng create
  1752. Session auto-20190303-021943 created.
  1753. Traces will be written in /home/root/lttng-traces/auto-20190303-021943
  1754. Enable the events you want to trace (in this case all user space events)::
  1755. root@crownbay:~# lttng enable-event --userspace --all
  1756. All UST events are enabled in channel channel0
  1757. Start the trace::
  1758. root@crownbay:~# lttng start
  1759. Tracing started for session auto-20190303-021943
  1760. Run the instrumented "hello world" program::
  1761. root@crownbay:~# ./hello
  1762. Hello, World!
  1763. Tracing... done.
  1764. And then stop the trace after awhile or after running a particular workload
  1765. that you want to trace::
  1766. root@crownbay:~# lttng stop
  1767. Tracing stopped for session auto-20190303-021943
  1768. You can now view the trace in text form on the target::
  1769. root@crownbay:~# lttng view
  1770. [02:31:14.906146544] (+?.?????????) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 0, intfield2 = 0x0, longfield = 0, netintfield = 0, netintfieldhex = 0x0, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
  1771. [02:31:14.906170360] (+0.000023816) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 1, intfield2 = 0x1, longfield = 1, netintfield = 1, netintfieldhex = 0x1, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
  1772. [02:31:14.906183140] (+0.000012780) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 2, intfield2 = 0x2, longfield = 2, netintfield = 2, netintfieldhex = 0x2, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
  1773. [02:31:14.906194385] (+0.000011245) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 3, intfield2 = 0x3, longfield = 3, netintfield = 3, netintfieldhex = 0x3, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
  1774. .
  1775. .
  1776. .
  1777. You can now safely destroy the trace session (note that this doesn't delete the
  1778. trace --- it's still there in ``~/lttng-traces``)::
  1779. root@crownbay:~# lttng destroy
  1780. Session auto-20190303-021943 destroyed at /home/root
  1781. LTTng Documentation
  1782. -------------------
  1783. You can find the primary LTTng Documentation on the `LTTng
  1784. Documentation <https://lttng.org/docs/>`__ site. The documentation on
  1785. this site is appropriate for intermediate to advanced software
  1786. developers who are working in a Linux environment and are interested in
  1787. efficient software tracing.
  1788. For information on LTTng in general, visit the `LTTng
  1789. Project <https://lttng.org/lttng2.0>`__ site. You can find a "Getting
  1790. Started" link on this site that takes you to an LTTng Quick Start.
  1791. blktrace
  1792. ========
  1793. blktrace is a tool for tracing and reporting low-level disk I/O.
  1794. blktrace provides the tracing half of the equation; its output can be
  1795. piped into the blkparse program, which renders the data in a
  1796. human-readable form and does some basic analysis:
  1797. blktrace Setup
  1798. --------------
  1799. For this section, we'll assume you've already performed the basic setup
  1800. outlined in the ":ref:`profile-manual/intro:General Setup`"
  1801. section.
  1802. blktrace is an application that runs on the target system. You can run
  1803. the entire blktrace and blkparse pipeline on the target, or you can run
  1804. blktrace in 'listen' mode on the target and have blktrace and blkparse
  1805. collect and analyze the data on the host (see the
  1806. ":ref:`profile-manual/usage:Using blktrace Remotely`" section
  1807. below). For the rest of this section we assume you've to the host through SSH
  1808. and will be running blktrace on the target.
  1809. Basic blktrace Usage
  1810. --------------------
  1811. To record a trace, just run the ``blktrace`` command, giving it the name
  1812. of the block device you want to trace activity on::
  1813. root@crownbay:~# blktrace /dev/sdc
  1814. In another shell, execute a workload you want to trace::
  1815. root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2; sync
  1816. Connecting to downloads.yoctoproject.org (140.211.169.59:80)
  1817. linux-2.6.19.2.tar.b 100% \|*******************************\| 41727k 0:00:00 ETA
  1818. Press ``Ctrl-C`` in the blktrace shell to stop the trace. It
  1819. will display how many events were logged, along with the per-cpu file
  1820. sizes (blktrace records traces in per-cpu kernel buffers and just
  1821. dumps them to user space for blkparse to merge and sort later)::
  1822. ^C=== sdc ===
  1823. CPU 0: 7082 events, 332 KiB data
  1824. CPU 1: 1578 events, 74 KiB data
  1825. Total: 8660 events (dropped 0), 406 KiB data
  1826. If you examine the files saved to disk, you see multiple files, one per CPU and
  1827. with the device name as the first part of the filename::
  1828. root@crownbay:~# ls -al
  1829. drwxr-xr-x 6 root root 1024 Oct 27 22:39 .
  1830. drwxr-sr-x 4 root root 1024 Oct 26 18:24 ..
  1831. -rw-r--r-- 1 root root 339938 Oct 27 22:40 sdc.blktrace.0
  1832. -rw-r--r-- 1 root root 75753 Oct 27 22:40 sdc.blktrace.1
  1833. To view the trace events, just call ``blkparse`` in the directory
  1834. containing the trace files, giving it the device name that forms the
  1835. first part of the filenames::
  1836. root@crownbay:~# blkparse sdc
  1837. 8,32 1 1 0.000000000 1225 Q WS 3417048 + 8 [jbd2/sdc-8]
  1838. 8,32 1 2 0.000025213 1225 G WS 3417048 + 8 [jbd2/sdc-8]
  1839. 8,32 1 3 0.000033384 1225 P N [jbd2/sdc-8]
  1840. 8,32 1 4 0.000043301 1225 I WS 3417048 + 8 [jbd2/sdc-8]
  1841. 8,32 1 0 0.000057270 0 m N cfq1225 insert_request
  1842. 8,32 1 0 0.000064813 0 m N cfq1225 add_to_rr
  1843. 8,32 1 5 0.000076336 1225 U N [jbd2/sdc-8] 1
  1844. 8,32 1 0 0.000088559 0 m N cfq workload slice:150
  1845. 8,32 1 0 0.000097359 0 m N cfq1225 set_active wl_prio:0 wl_type:1
  1846. 8,32 1 0 0.000104063 0 m N cfq1225 Not idling. st->count:1
  1847. 8,32 1 0 0.000112584 0 m N cfq1225 fifo= (null)
  1848. 8,32 1 0 0.000118730 0 m N cfq1225 dispatch_insert
  1849. 8,32 1 0 0.000127390 0 m N cfq1225 dispatched a request
  1850. 8,32 1 0 0.000133536 0 m N cfq1225 activate rq, drv=1
  1851. 8,32 1 6 0.000136889 1225 D WS 3417048 + 8 [jbd2/sdc-8]
  1852. 8,32 1 7 0.000360381 1225 Q WS 3417056 + 8 [jbd2/sdc-8]
  1853. 8,32 1 8 0.000377422 1225 G WS 3417056 + 8 [jbd2/sdc-8]
  1854. 8,32 1 9 0.000388876 1225 P N [jbd2/sdc-8]
  1855. 8,32 1 10 0.000397886 1225 Q WS 3417064 + 8 [jbd2/sdc-8]
  1856. 8,32 1 11 0.000404800 1225 M WS 3417064 + 8 [jbd2/sdc-8]
  1857. 8,32 1 12 0.000412343 1225 Q WS 3417072 + 8 [jbd2/sdc-8]
  1858. 8,32 1 13 0.000416533 1225 M WS 3417072 + 8 [jbd2/sdc-8]
  1859. 8,32 1 14 0.000422121 1225 Q WS 3417080 + 8 [jbd2/sdc-8]
  1860. 8,32 1 15 0.000425194 1225 M WS 3417080 + 8 [jbd2/sdc-8]
  1861. 8,32 1 16 0.000431968 1225 Q WS 3417088 + 8 [jbd2/sdc-8]
  1862. 8,32 1 17 0.000435251 1225 M WS 3417088 + 8 [jbd2/sdc-8]
  1863. 8,32 1 18 0.000440279 1225 Q WS 3417096 + 8 [jbd2/sdc-8]
  1864. 8,32 1 19 0.000443911 1225 M WS 3417096 + 8 [jbd2/sdc-8]
  1865. 8,32 1 20 0.000450336 1225 Q WS 3417104 + 8 [jbd2/sdc-8]
  1866. 8,32 1 21 0.000454038 1225 M WS 3417104 + 8 [jbd2/sdc-8]
  1867. 8,32 1 22 0.000462070 1225 Q WS 3417112 + 8 [jbd2/sdc-8]
  1868. 8,32 1 23 0.000465422 1225 M WS 3417112 + 8 [jbd2/sdc-8]
  1869. 8,32 1 24 0.000474222 1225 I WS 3417056 + 64 [jbd2/sdc-8]
  1870. 8,32 1 0 0.000483022 0 m N cfq1225 insert_request
  1871. 8,32 1 25 0.000489727 1225 U N [jbd2/sdc-8] 1
  1872. 8,32 1 0 0.000498457 0 m N cfq1225 Not idling. st->count:1
  1873. 8,32 1 0 0.000503765 0 m N cfq1225 dispatch_insert
  1874. 8,32 1 0 0.000512914 0 m N cfq1225 dispatched a request
  1875. 8,32 1 0 0.000518851 0 m N cfq1225 activate rq, drv=2
  1876. .
  1877. .
  1878. .
  1879. 8,32 0 0 58.515006138 0 m N cfq3551 complete rqnoidle 1
  1880. 8,32 0 2024 58.516603269 3 C WS 3156992 + 16 [0]
  1881. 8,32 0 0 58.516626736 0 m N cfq3551 complete rqnoidle 1
  1882. 8,32 0 0 58.516634558 0 m N cfq3551 arm_idle: 8 group_idle: 0
  1883. 8,32 0 0 58.516636933 0 m N cfq schedule dispatch
  1884. 8,32 1 0 58.516971613 0 m N cfq3551 slice expired t=0
  1885. 8,32 1 0 58.516982089 0 m N cfq3551 sl_used=13 disp=6 charge=13 iops=0 sect=80
  1886. 8,32 1 0 58.516985511 0 m N cfq3551 del_from_rr
  1887. 8,32 1 0 58.516990819 0 m N cfq3551 put_queue
  1888. CPU0 (sdc):
  1889. Reads Queued: 0, 0KiB Writes Queued: 331, 26,284KiB
  1890. Read Dispatches: 0, 0KiB Write Dispatches: 485, 40,484KiB
  1891. Reads Requeued: 0 Writes Requeued: 0
  1892. Reads Completed: 0, 0KiB Writes Completed: 511, 41,000KiB
  1893. Read Merges: 0, 0KiB Write Merges: 13, 160KiB
  1894. Read depth: 0 Write depth: 2
  1895. IO unplugs: 23 Timer unplugs: 0
  1896. CPU1 (sdc):
  1897. Reads Queued: 0, 0KiB Writes Queued: 249, 15,800KiB
  1898. Read Dispatches: 0, 0KiB Write Dispatches: 42, 1,600KiB
  1899. Reads Requeued: 0 Writes Requeued: 0
  1900. Reads Completed: 0, 0KiB Writes Completed: 16, 1,084KiB
  1901. Read Merges: 0, 0KiB Write Merges: 40, 276KiB
  1902. Read depth: 0 Write depth: 2
  1903. IO unplugs: 30 Timer unplugs: 1
  1904. Total (sdc):
  1905. Reads Queued: 0, 0KiB Writes Queued: 580, 42,084KiB
  1906. Read Dispatches: 0, 0KiB Write Dispatches: 527, 42,084KiB
  1907. Reads Requeued: 0 Writes Requeued: 0
  1908. Reads Completed: 0, 0KiB Writes Completed: 527, 42,084KiB
  1909. Read Merges: 0, 0KiB Write Merges: 53, 436KiB
  1910. IO unplugs: 53 Timer unplugs: 1
  1911. Throughput (R/W): 0KiB/s / 719KiB/s
  1912. Events (sdc): 6,592 entries
  1913. Skips: 0 forward (0 - 0.0%)
  1914. Input file sdc.blktrace.0 added
  1915. Input file sdc.blktrace.1 added
  1916. The report shows each event that was
  1917. found in the blktrace data, along with a summary of the overall block
  1918. I/O traffic during the run. You can look at the
  1919. `blkparse <https://linux.die.net/man/1/blkparse>`__ manual page to learn the
  1920. meaning of each field displayed in the trace listing.
  1921. Live Mode
  1922. ~~~~~~~~~
  1923. blktrace and blkparse are designed from the ground up to be able to
  1924. operate together in a "pipe mode" where the standard output of blktrace can be
  1925. fed directly into the standard input of blkparse::
  1926. root@crownbay:~# blktrace /dev/sdc -o - | blkparse -i -
  1927. This enables long-lived tracing sessions
  1928. to run without writing anything to disk, and allows the user to look for
  1929. certain conditions in the trace data in 'real-time' by viewing the trace
  1930. output as it scrolls by on the screen or by passing it along to yet
  1931. another program in the pipeline such as grep which can be used to
  1932. identify and capture conditions of interest.
  1933. There's actually another blktrace command that implements the above
  1934. pipeline as a single command, so the user doesn't have to bother typing
  1935. in the above command sequence::
  1936. root@crownbay:~# btrace /dev/sdc
  1937. Using blktrace Remotely
  1938. ~~~~~~~~~~~~~~~~~~~~~~~
  1939. Because blktrace traces block I/O and at the same time normally writes
  1940. its trace data to a block device, and in general because it's not really
  1941. a great idea to make the device being traced the same as the device the
  1942. tracer writes to, blktrace provides a way to trace without perturbing
  1943. the traced device at all by providing native support for sending all
  1944. trace data over the network.
  1945. To have blktrace operate in this mode, start blktrace in server mode on the
  1946. host system, which is going to store the captured data::
  1947. $ blktrace -l
  1948. server: waiting for connections...
  1949. On the target system that is going to be traced, start blktrace in client
  1950. mode with the -h option to connect to the host system, also passing it the
  1951. device to trace::
  1952. root@crownbay:~# blktrace -d /dev/sdc -h 192.168.1.43
  1953. blktrace: connecting to 192.168.1.43
  1954. blktrace: connected!
  1955. On the host system, you should see this::
  1956. server: connection from 192.168.1.43
  1957. In another shell, execute a workload you want to trace::
  1958. root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2; sync
  1959. Connecting to downloads.yoctoproject.org (140.211.169.59:80)
  1960. linux-2.6.19.2.tar.b 100% \|*******************************\| 41727k 0:00:00 ETA
  1961. When it's done, do a ``Ctrl-C`` on the target system to stop the
  1962. trace::
  1963. ^C=== sdc ===
  1964. CPU 0: 7691 events, 361 KiB data
  1965. CPU 1: 4109 events, 193 KiB data
  1966. Total: 11800 events (dropped 0), 554 KiB data
  1967. On the host system, you should also see a trace summary for the trace
  1968. just ended::
  1969. server: end of run for 192.168.1.43:sdc
  1970. === sdc ===
  1971. CPU 0: 7691 events, 361 KiB data
  1972. CPU 1: 4109 events, 193 KiB data
  1973. Total: 11800 events (dropped 0), 554 KiB data
  1974. The blktrace instance on the host will
  1975. save the target output inside a ``<hostname>-<timestamp>`` directory::
  1976. $ ls -al
  1977. drwxr-xr-x 10 root root 1024 Oct 28 02:40 .
  1978. drwxr-sr-x 4 root root 1024 Oct 26 18:24 ..
  1979. drwxr-xr-x 2 root root 1024 Oct 28 02:40 192.168.1.43-2012-10-28-02:40:56
  1980. ``cd`` into that directory to see the output files::
  1981. $ ls -l
  1982. -rw-r--r-- 1 root root 369193 Oct 28 02:44 sdc.blktrace.0
  1983. -rw-r--r-- 1 root root 197278 Oct 28 02:44 sdc.blktrace.1
  1984. And run blkparse on the host system using the device name::
  1985. $ blkparse sdc
  1986. 8,32 1 1 0.000000000 1263 Q RM 6016 + 8 [ls]
  1987. 8,32 1 0 0.000036038 0 m N cfq1263 alloced
  1988. 8,32 1 2 0.000039390 1263 G RM 6016 + 8 [ls]
  1989. 8,32 1 3 0.000049168 1263 I RM 6016 + 8 [ls]
  1990. 8,32 1 0 0.000056152 0 m N cfq1263 insert_request
  1991. 8,32 1 0 0.000061600 0 m N cfq1263 add_to_rr
  1992. 8,32 1 0 0.000075498 0 m N cfq workload slice:300
  1993. .
  1994. .
  1995. .
  1996. 8,32 0 0 177.266385696 0 m N cfq1267 arm_idle: 8 group_idle: 0
  1997. 8,32 0 0 177.266388140 0 m N cfq schedule dispatch
  1998. 8,32 1 0 177.266679239 0 m N cfq1267 slice expired t=0
  1999. 8,32 1 0 177.266689297 0 m N cfq1267 sl_used=9 disp=6 charge=9 iops=0 sect=56
  2000. 8,32 1 0 177.266692649 0 m N cfq1267 del_from_rr
  2001. 8,32 1 0 177.266696560 0 m N cfq1267 put_queue
  2002. CPU0 (sdc):
  2003. Reads Queued: 0, 0KiB Writes Queued: 270, 21,708KiB
  2004. Read Dispatches: 59, 2,628KiB Write Dispatches: 495, 39,964KiB
  2005. Reads Requeued: 0 Writes Requeued: 0
  2006. Reads Completed: 90, 2,752KiB Writes Completed: 543, 41,596KiB
  2007. Read Merges: 0, 0KiB Write Merges: 9, 344KiB
  2008. Read depth: 2 Write depth: 2
  2009. IO unplugs: 20 Timer unplugs: 1
  2010. CPU1 (sdc):
  2011. Reads Queued: 688, 2,752KiB Writes Queued: 381, 20,652KiB
  2012. Read Dispatches: 31, 124KiB Write Dispatches: 59, 2,396KiB
  2013. Reads Requeued: 0 Writes Requeued: 0
  2014. Reads Completed: 0, 0KiB Writes Completed: 11, 764KiB
  2015. Read Merges: 598, 2,392KiB Write Merges: 88, 448KiB
  2016. Read depth: 2 Write depth: 2
  2017. IO unplugs: 52 Timer unplugs: 0
  2018. Total (sdc):
  2019. Reads Queued: 688, 2,752KiB Writes Queued: 651, 42,360KiB
  2020. Read Dispatches: 90, 2,752KiB Write Dispatches: 554, 42,360KiB
  2021. Reads Requeued: 0 Writes Requeued: 0
  2022. Reads Completed: 90, 2,752KiB Writes Completed: 554, 42,360KiB
  2023. Read Merges: 598, 2,392KiB Write Merges: 97, 792KiB
  2024. IO unplugs: 72 Timer unplugs: 1
  2025. Throughput (R/W): 15KiB/s / 238KiB/s
  2026. Events (sdc): 9,301 entries
  2027. Skips: 0 forward (0 - 0.0%)
  2028. You should see the trace events and summary just as you would have if you'd run
  2029. the same command on the target.
  2030. Tracing Block I/O via 'ftrace'
  2031. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2032. It's also possible to trace block I/O using only
  2033. :ref:`profile-manual/usage:The 'trace events' Subsystem`, which
  2034. can be useful for casual tracing if you don't want to bother dealing with the
  2035. user space tools.
  2036. To enable tracing for a given device, use ``/sys/block/xxx/trace/enable``,
  2037. where ``xxx`` is the device name. This for example enables tracing for
  2038. ``/dev/sdc``::
  2039. root@crownbay:/sys/kernel/debug/tracing# echo 1 > /sys/block/sdc/trace/enable
  2040. Once you've selected the device(s) you want
  2041. to trace, selecting the ``blk`` tracer will turn the blk tracer on::
  2042. root@crownbay:/sys/kernel/debug/tracing# cat available_tracers
  2043. blk function_graph function nop
  2044. root@crownbay:/sys/kernel/debug/tracing# echo blk > current_tracer
  2045. Execute the workload you're interested in::
  2046. root@crownbay:/sys/kernel/debug/tracing# cat /media/sdc/testfile.txt
  2047. And look at the output (note here that we're using ``trace_pipe`` instead of
  2048. trace to capture this trace --- this allows us to wait around on the pipe
  2049. for data to appear)::
  2050. root@crownbay:/sys/kernel/debug/tracing# cat trace_pipe
  2051. cat-3587 [001] d..1 3023.276361: 8,32 Q R 1699848 + 8 [cat]
  2052. cat-3587 [001] d..1 3023.276410: 8,32 m N cfq3587 alloced
  2053. cat-3587 [001] d..1 3023.276415: 8,32 G R 1699848 + 8 [cat]
  2054. cat-3587 [001] d..1 3023.276424: 8,32 P N [cat]
  2055. cat-3587 [001] d..2 3023.276432: 8,32 I R 1699848 + 8 [cat]
  2056. cat-3587 [001] d..1 3023.276439: 8,32 m N cfq3587 insert_request
  2057. cat-3587 [001] d..1 3023.276445: 8,32 m N cfq3587 add_to_rr
  2058. cat-3587 [001] d..2 3023.276454: 8,32 U N [cat] 1
  2059. cat-3587 [001] d..1 3023.276464: 8,32 m N cfq workload slice:150
  2060. cat-3587 [001] d..1 3023.276471: 8,32 m N cfq3587 set_active wl_prio:0 wl_type:2
  2061. cat-3587 [001] d..1 3023.276478: 8,32 m N cfq3587 fifo= (null)
  2062. cat-3587 [001] d..1 3023.276483: 8,32 m N cfq3587 dispatch_insert
  2063. cat-3587 [001] d..1 3023.276490: 8,32 m N cfq3587 dispatched a request
  2064. cat-3587 [001] d..1 3023.276497: 8,32 m N cfq3587 activate rq, drv=1
  2065. cat-3587 [001] d..2 3023.276500: 8,32 D R 1699848 + 8 [cat]
  2066. And this turns off tracing for the specified device::
  2067. root@crownbay:/sys/kernel/debug/tracing# echo 0 > /sys/block/sdc/trace/enable
  2068. blktrace Documentation
  2069. ----------------------
  2070. Online versions of the manual pages for the commands discussed in this
  2071. section can be found here:
  2072. - https://linux.die.net/man/8/blktrace
  2073. - https://linux.die.net/man/1/blkparse
  2074. - https://linux.die.net/man/8/btrace
  2075. The above manual pages, along with manuals for the other blktrace utilities
  2076. (``btt``, ``blkiomon``, etc) can be found in the ``/doc`` directory of the blktrace
  2077. tools git repository::
  2078. $ git clone git://git.kernel.dk/blktrace.git